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ABSTRACT
Analysis of high-precision timing observations of an arrayof ∼20 millisecond pulsars (a so-
called “timing array”) may ultimately result in the detection of a stochastic gravitational-wave
background. The feasibility of such a detection and the required duration of this type of ex-
periment are determined by the achievable rms of the timing residuals and the timing stability
of the pulsars involved. We present results of the first long-term, high-precision timing cam-
paign on a large sample of millisecond pulsars used in gravitational-wave detection projects.
We show that the timing residuals of most pulsars in our sample do not contain significant low-
frequency noise that could limit the use of these pulsars fordecade-long gravitational-wave
detection efforts. For our most precisely timed pulsars, intrinsic instabilities of the pulsars or
the observing system are shown to contribute to timing irregularities on a five-year timescale
below the 100 ns level. Based on those results, realistic sensitivity curves for planned and
ongoing timing array efforts are determined. We conclude that prospects for detection of
a gravitational-wave background through pulsar timing array efforts within five years to a
decade are good.
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1 INTRODUCTION

The rotational behaviour of pulsars has long been known to bepre-
dictable, especially in the case of millisecond pulsars (MSPs). Cur-
rent models suggest that such pulsars have been spun up by ac-
cretion from their binary companion star to periods of several mil-
liseconds, making them spin much faster than the more numerous
younger pulsars, which typically have periods of about a second.
The rotational stability of MSPs is generally 3-4 orders of magni-
tude better than that of normal pulsars and on timescales of sev-
eral years, it has been shown that some MSPs have a timing stabil-
ity comparable to the most precise atomic clocks (Matsakis et al.
1997). This timing stability is most clearly quantified through
the technique of pulsar timing, which compares arrival times of
pulses to a model describing the pulsar, its binary orbit andthe
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interstellar medium (ISM) between the pulsar and Earth (as de-
tailed by Edwards et al. 2006). This technique has enabled deter-
mination of physical parameters at outstanding levels of preci-
sion, such as the orbital characteristics of binary star systems (e.g.
van Straten et al. 2001), the masses of pulsars and their companions
(e.g. Jacoby et al. 2005; Nice 2006) and the turbulent character of
the ISM (e.g. You et al. 2007). The strong gravitational fields of
pulsars in binary systems have also enabled stringent testsof gen-
eral relativity (GR) and alternative theories of gravity, as described
by, e.g., Kramer et al. (2006) and Bhat et al. (2008). Finally, pulsars
have provided the first evidence that gravitational waves (GWs) ex-
ist at levels predicted by GR (Taylor & Weisberg 1982) and have
placed the strongest limit yet on the existence of a background of
GWs in the Galaxy (Jenet et al. 2006).

Sazhin (1978) was the first to investigate the potential effect
of GWs on the times-of-arrival (TOAs) of pulsar pulses and to
conclude that direct detection of GWs could be possible through
pulsar timing. Subsequent analyses and theoretical predictions for
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astronomical sources of GWs have determined that a stochastic
gravitational-wave background (GWB) from binary black holes in
the cores of galaxies is the most likely signal to be detectable.
As summarised in Jenet et al. (2006), the energy density of such
a GWB per unit logarithmic frequency interval can be expressed
as:

Ωgw(f) =
2

3

π2

H2
0

A2 f2α+2

f2α
ref

, (1)

whereH0 = 100h km s−1 Mpc−1 is the Hubble constant,f is the
GW frequency,fref = (1 yr)−1, A is the dimensionless amplitude
of the GWB andα is the spectral index of the GWB. The one-
sided power spectrum of the effect of such a GWB on pulsar timing
residuals is given by:

P (f) =
1

12π2f3
hc(f)2, (2)

wherehc is the characteristic strain spectrum, defined as:

hc(f) = A

„

f

fref

«α

. (3)

Jenet et al. (2006) also summarized the characteristics andex-
pected ranges for various GWBs of interest. Most importantly, for a
GWB created by supermassive black-hole mergers,α = −2/3 and
A is predicted to be between10−15 and 10−14 (Jaffe & Backer
2003; Wyithe & Loeb 2003). Sesana et al. (2008) expanded upon
these analyses and showed that the actual GWB spectrum strongly
depends on the merger history, with a variety of spectral indices
possible. They concluded, however, thatα = −2/3 was a rea-
sonable approximation for practical purposes. For a background of
GWs that were formed in the early Universe,α ≈ −1 and the
amplitude range predicted by Grishchuk (2005) isA = 10−17 −
10−15, but standard models (e.g. Boyle & Buonanno 2008) pre-
dict much lower amplitudes. A third GWB that may be detected
by PTAs, is formed by cosmic strings (Damour & Vilenkin 2005;
Caldwell et al. 1996), with predicted amplitudes between10−16 −
10−14 andα = −7/6 (Maggiore 2000).

Hellings & Downs (1983) first investigated the correlations
that arise between timing data of different pulsars due to the
presence of a stochastic and isotropic GWB in the Galaxy. They
demonstrated that the GWs cause a quadrupolar correlation be-
tween the timing residuals of different pulsars. Romani (1989) and
Foster & Backer (1990) expanded this analysis and introduced the
concept of a pulsar timing array (PTA), in which an ensemble of
pulsars is timed and their residuals correlated with each other. The
PTA concept uses the quadrupolar correlation signature first de-
rived by Hellings & Downs (1983) to separate the effect of a GW
from all other contributions to the residuals, such as intrinsic pulsar
timing irregularities, clock errors, ISM effects and SolarSystem
ephemeris errors. Alternatively, the correlation signature for non-
Einsteinian GWs (as recently derived by Lee et al. 2008) could be
used.

The PTA concept was more rigorously explored by Jenet et al.
(2005) who first determined the sensitivity of PTA experiments to
backgrounds of GWs (Equation (12) of Jenet et al. 2005). Their
analysis showed that the sensitivity of a PTA depends on fourmain
parameters: the number of pulsars, the data span (T ), the root-
mean-square of the timing residuals (simply ‘rms’ orσ henceforth)
and the number of observations in each of the pulsar timing data
sets (NTOA). They further determined that, for a PTA consisting of
weekly observations of 20 MSPs, all with a timing rms of 100 ns,
a five-year observational campaign would be required to makea

∼ 3σ detection of a GWB withα = −2/3 and A = 10−15.
It follows from Equation (12) of Jenet et al. (2005) that the low-
est amplitude of a GWB from supermassive black-hole mergersto
which a PTA is sensitive, scales as:

Amin,GWB ∝ σ

T 5/3
√

NTOA

(4)

Depending on the achievable rms residual of MSPs, an alternative
PTA could therefore achieve the same results through timingof 20
MSPs on a biweekly basis for ten years with an rms of close to
300 ns. This raises two questions related to the potential ofPTAs to
detect a GWB. First, down to which precision can MSPs be timed
(σmin) and second, can a low residual rms be maintained over long
campaigns (i.e. doesσ/T 5/3 decrease with time)? In the context
of this second question, we will henceforth use the term “timing
stability” when referring to the potential of an MSP timing data set
to maintain a constant, preferably low rms residual at all timescales
up to the timespan of a PTA project, which is typically envisaged
to be five years or longer.

It has been shown for a few pulsars that timing with a residual
rms of a few hundred nanoseconds is possible for campaigns last-
ing a few years. Specifically, Hotan et al. (2006) presented atiming
rms of 200 ns over two years of timing on PSRs J1713+0747 and
J1939+2134 (PSR B1937+21) and 300 ns over two years of tim-
ing on PSR J1909−3744; Splaver et al. (2005) reported an rms of
180 ns on six years of timing PSR J1713+0747 and Verbiest et al.
(2008) timed PSR J0437−4715 at 200 ns over ten years. Similar
results for PSRs J0437−4715 and J1939+2134 were obtained by
Hobbs et al. (2008) over five years of timing. It has, however,not
been demonstrated thus far that MSPs can be timed with an rms
residual of6 100 ns over five years or more.

The second question - whether a low rms residual can be
maintained over ten years or longer, also remains unanswered.
Kaspi et al. (1994) detected excess low-frequency noise in PSR
J1939+2134; Splaver et al. (2005) presented apparent instabilities
in long-term timing of PSR J1713+0747 and Verbiest et al. (2008)
noted correlations in the timing residuals of PSR J0437−4715, but
apart from these, no long-term timing of MSPs has been presented
to date. Given the low rms residual reported on all three sources,
it is unclear how strongly the reported non-Gaussian noise would
affect the use of these pulsars in a GWB detection effort.

In this article we present the first high-precision long-term
timing results for a sample of 20 MSPs. The source selection,ob-
serving systems and data analysis methods are described in§2. Our
updated timing models and residual plots for all pulsars in our sam-
ple are also presented in§2, allowing the reader a fundamental in-
spection of the reliability of our timing results. In§3, we perform a
stability analysis of the timing data, with the dual purposeof iden-
tifying low-frequency noise in any of our timing data and of as-
sessing the potential impact of such noise on the use of pulsars in
a timing array. In§4 we outline a new way of quantifying differ-
ent components of the pulsar timing rms. Through this analysis,
we separate the levels of receiver noise, noise with a dependency
on observing frequency and any temporal instabilities, providing a
bound on the residual rms that might be achievable on a five-year
timescale. We apply this analysis to three of our most precisely
timed pulsars. In§5, we calculate sensitivity curves for ongoing
and planned PTAs. These sensitvity curves take into accountthe
inhomogeneous character of a realistic array (i.e. the factthat the
rms will differ between pulsars) and assume a bound on residual
rms as determined in§4. In §6 we summarise our findings.
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2 OBSERVATIONS AND DATA REDUCTION

2.1 Sample Selection

The data presented in this paper have been collated from two pul-
sar timing programmes at the Parkes radio telescope. The old-
est of these commenced during the Parkes 70 cm MSP survey
(Bailes et al. 1994), aiming to characterise properly the astrometric
and binary parameters of the MSPs found in the survey. Initial tim-
ing results from this campaign were published by Bell et al. (1997)
and Toscano et al. (1999). The bright millisecond pulsars PSRs
J1713+0747 and B1937+21 (both discovered earlier at Arecibo)
were also included in this programme. A few years later, as new
discoveries were made in the Swinburne intermediate-latitude sur-
vey (Edwards et al. 2001), these pulsars were also added, resulting
in a total of 16 MSPs that were regularly timed by 2006. Improved
timing solutions for these 16 pulsars were presented by Hotan et al.
(2006) and Ord et al. (2006).

Besides the projects described above, the Parkes Pulsar Tim-
ing Array (PPTA; Manchester 2008) project commenced more reg-
ular timing observations of these pulsars in late 2004, expanding the
number of MSPs to 20 (listed in Table 1) and adding regular moni-
toring at a low observing frequency (685 MHz) to allow correction
for variations of the ISM electron density. A detailed analysis of
these low frequency observations and ISM effects was recently pre-
sented by You et al. (2007) and an analysis of the combined data on
PSR J0437−4715 was published by Verbiest et al. (2008). For this
pulsar we will use the timing results presented in that publication;
for all other pulsars we will present our improved timing models in
§2.4.

2.2 Observing Systems

Unless otherwise stated, the data presented were obtained at the
Parkes 64 m radio telescope, at a wavelength of 20 cm. Two re-
ceivers were used: the H-OH receiver and the 20 cm multibeam
receiver (Staveley-Smith et al. 1996). Over the last five years, ob-
servations at 685 MHz were taken with the 10/50 cm coaxial re-
ceiver for all pulsars; however, they were only used directly in the
final timing analysis of PSR J0613−0200, whose profile displays a
sharp spike at this frequency if coherent dedispersion is applied. For
PSRs J1045−4509, J1909−3744 and J1939+2134, the 685 MHz
observations were used to model and remove the effects of tem-
poral variations in interstellar dispersion delays and hence are in-
cluded indirectly in the timing analysis. For all other pulsars any
such variations were below the level of our sensitivity.

Three different observing observing systems systems were
used. Firstly, the Caltech Fast Pulsar Timing Machine (FPTM;
Sandhu et al. 1997; Sandhu 2001), between 1994 and November
2001. This is an autocorrelation spectrometer with a total band-
width of up to 256 MHz. Secondly, the 256 MHz bandwidth ana-
logue filterbank (FB) was used in 2002 and 2003. Finally, the
Caltech-Parkes-Swinburne Recorder 2 (CPSR2; Hotan et al. 2006)
was used from November 2002 onwards. CPSR2 is a baseband data
recorder with two 64 MHz bandwidth observing bands (one usually
centred at 1341 MHz, the other at 1405 MHz) and phase-coherent
dispersion removal occuring in near real time.

2.3 Arrival Time Determination

The processing applied differs for data from different observing
systems. The FPTM data were calibrated using a real-time sys-

tem to produce either two or four Stokes parameters which were
later combined into Stokes I. The FB data were produced from a
search system with no polarimetric calibration possible. This sys-
tem produced Stokes I profiles after folding 1-bit data. Datafrom
both of these systems were integrated in frequency and time to pro-
duce a single profile for each observation. These observations were
∼25 minutes in duration. For CPSR2 data, in order to minimise
the effects of aliasing and spectral leakage, 12.5% of each edge of
the bandpass was removed. To remove the worst radio frequency
interference, any frequency channel with power more than4σ in
excess of the local median was also removed (“local” was defined
as the nearest 21 channels and the standard deviationσ was deter-
mined iteratively). CPSR2 also operated a total power monitor on
microsecond timescales, which removed most impulsive interfer-
ence.

The CPSR2 data were next integrated for five minutes and cal-
ibrated for differential gain and phase to correct for possible asym-
metries in the receiver hardware. If calibrator observations were
available (especially in the years directly following the CPSR2
commissioning, observations of a pulsating noise source, needed
for polarimetric calibration, were not part of the standardobserv-
ing schedule). Subsequently the data were integrated for the dura-
tion of the observation, which was typically 32 minutes for PSRs
J2124−3358, J1939+2134 and J1857+0943 and 64 minutes for all
other pulsars. In the case of PSR J1643−1224, the integration time
was 32 minutes until December 2005 and 64 minutes from 2006
onwards. Finally, the CPSR2 data were integrated in frequency and
the Stokes parameters were combined into total power. CPSR2data
that did not have calibrator observations available were processed
identically, except for the calibration step. While for some pul-
sars (like PSR J0437−4715) these uncalibrated data are provably
of inferior quality (see, e.g. van Straten 2006), in our casethis is
largely outweighed by the improved statistics of the largernumber
of TOAs and by the extended timing baseline these observations
provided. We therefore include both calibrated and uncalibrated ob-
servations in our data sets.

Pulse TOAs were determined through cross-correlation of the
total intensity profiles thus obtained with pulsar and frequency-
dependent template profiles. These template profiles were created
through addition of a large number of observations and were phase-
aligned for both CPSR2 observing bands. As there were only few
high signal-to-noise observations obtained with the FPTM and FB
backends for most pulsars, these data were timed against standards
created with the CPSR2 backend. This may affect the reliability
of their derived TOA errors. For this reason we have evaluated the
underestimation of TOA errors for each backend separately,as ex-
plained in the next section. While the TOA errors were generally
determined through the standard Fourier phase gradient method,
the Gaussian interpolation method produced more accurate esti-
mates for pulsars with low signal-to-noise ratios (Hotan etal. 2005)
- specifically for PSRs J0613−0200, J2129−5721, J1732−5049,
J2124−3358 and J1045−4509. The PSRCHIVE software package
(Hotan et al. 2004) was used to perform all of the processing de-
scribed above.
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Table 1.Pulsars in our sample. Column 2 gives the reference for the discovery paper, while column 3 provides references to recentor important publications
on timing of the sources. For the three pulsars with originalB1950 names, these names are given beside the J2000.0 names.

Pulsar Discovery Previous Pulse Orbital Dispersion
name timing period (ms) period (d) measure

solutiona (cm−3 pc)

J0437–4715 Johnston et al. (1993) 1, 2 5.8 5.7 2.6
J0613–0200 Lorimer et al. (1995) 3 3.1 1.2 38.8
J0711–6830 Bailes et al. (1997) 3, 4 5.5 – 18.4
J1022+1001 Camilo et al. (1996) 3 16.5 7.8 10.3
J1024–0719 Bailes et al. (1997) 3 5.2 – 6.5

J1045–4509 Bailes et al. (1994) 3 7.5 4.1 58.2
J1600–3053 Ord et al. (2006) 5 3.6 14.3 52.3
J1603–7202 Lorimer et al. (1996) 3 14.8 6.3 38.0
J1643–1224 Lorimer et al. (1995) 4 4.6 147.0 62.4
J1713+0747 Foster et al. (1993) 3, 6 4.6 67.8 16.0

J1730–2304 Lorimer et al. (1995) 4 8.1 – 9.6
J1732–5049 Edwards & Bailes (2001) 7 5.3 5.3 56.8
J1744–1134 Bailes et al. (1997) 3 4.1 – 3.1
B1821–24; J1824−2452 Lyne et al. (1987) 8, 10 3.1 – 120.5
B1855+09; J1857+0943 Segelstein et al. (1986) 3, 9 5.4 12.3 13.3

J1909–3744 Jacoby et al. (2003) 3, 11 2.9 1.5 10.4
B1937+21; J1939+2134 Backer et al. (1982) 3, 9 1.6 – 71.0
J2124–3358 Bailes et al. (1997) 3 4.9 – 4.6
J2129–5721 Lorimer et al. (1996) 3 3.7 6.6 31.9
J2145–0750 Bailes et al. (1994) 3, 12 16.1 6.8 9.0

a References: (1) Verbiest et al. (2008); (2) van Straten et al. (2001); (3) Hotan et al. (2006); (4) Toscano et al. (1999); (5) Ord et al. (2006); (6) Splaver et al.
(2005); (7) Edwards & Bailes (2001); (8) Hobbs et al. (2004);(9) Kaspi et al. (1994); (10) Cognard & Backer (2004); (11) Jacoby et al. (2005); (12)
Löhmer et al. (2004)
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Table 2.Summary of the timing results, sorted in order of decreasingrms residual. The columns present the pulsar name, the rms timing residual (without
prewhitening), the length of the data set and the number of TOAs. For PSRs J1939+2134 and J1857+0943 this table only contains the Parkes data. See§2.4
and§3 for details.

Pulsar rms T NTOA

name (µs) (yr)

J1909−3744 0.166 5.2 893
J1713+0747 0.198 14.0 392
J0437−4715 0.199 9.9 2847
J1744−1134 0.617 13.2 342
J1939+2134 0.679 12.5 168

J1600−3053 1.12 6.8 477
J0613−0200 1.52 8.2 190
J1824−2452 1.63 2.8 89
J1022+1001 1.63 5.1 260
J2145−0750 1.88 13.8 377

J1643−1224 1.94 14.0 241
J1603−7202 1.98 12.4 212
J2129−5721 2.20 12.5 179
J1730−2304 2.52 14.0 180
J1857+0943 2.92 3.9 106

J1732−5049 3.23 6.8 129
J0711−6830 3.24 14.2 227
J2124−3358 4.01 13.8 416
J1024−0719 4.17 12.1 269
J1045−4509 6.70 14.1 401



Figure 1. Timing residuals of the 20 pulsars in our sample. Scaling on the x-axis is in years and on the y-axis inµs. For PSRs J1857+0943 and J1939+2134,
these plots include the Arecibo data made publically available by Kaspi et al. (1994); all other data are from the Parkes telescope, as described in§2. Sudden
changes in white noise levels are due to changes in pulsar backend set-up - see§2 for more details.
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Table 3.Timing parameters for the single pulsars PSRs J0711−6830, J1024−0719, J1730−2304, J1744−1134, J1824−2452, J1939+2134 and J2124−3358.
Numbers in brackets give twice the formal standard deviation in the last digit quoted. Note that these parameters are determined using TEMPO2, which uses
the International Celestial Reference System and Barycentric Coordinate Time. As a result this timing model must be modified before being used with an
observing system that inputs Tempo format parameters. See Hobbs et al. (2006) for more information.

Fit and data set parameters

Pulsar name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J0711−6830 J1024−0719 J1730−2304 J1744−1134

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49373.6−54546.4 50117.5−54544.6 49421.9−54544.8 49729.1−54546.9
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . 227 269 180 342
rms timing residual (µs) . . . . . . . . . . . . . . . . . . . . 3.24 3.80 2.52 0.617
Reference epoch for P,α,
δ and DM determination . . . . . . . . . . . . . . . . . . . 49800 53000 53300 53742

Measured Quantities

Right ascension,α (J2000.0). . . . . . . . . . . . . . . . 07:11:54.22579(15) 10:24:38.68846(3) 17:30:21.6611(3) 17:44:29.403209(4)
Declination,δ (J2000.0) . . . . . . . . . . . . . . . . . . . . −68:30:47.5989(7) −07:19:19.1700(10) −23:04:31.29(8) −11:34:54.6606(2)
Proper motion inα,µα cos δ(mas yr−1) . . . . . −15.55(8) −35.3(2) 20.27(6) 18.804(15)
Proper motion inδ, µδ (mas yr−1) . . . . . . . . . . 14.23(7) −48.2(3) – −9.40(6)
Annual parallax,π (mas) . . . . . . . . . . . . . . . . . . . – – – 2.4(2)
Dispersion measure, DM (cm−3 pc) . . . . . . . . . 18.408(4) 6.486(3) 9.617(2) 3.1380(6)
Pulse frequency,ν (Hz) . . . . . . . . . . . . . . . . . . . . 182.117234869347(4) 193.71568356844(13) 123.110287192301(2) 245.4261197483027(5)
Pulse frequency derivative,ν̇ (10−16 s−2) . . . −4.94406(15) −6.95(3) −3.05906(10) −5.38188(4)

Prewhitening Terms

Fundamental wave frequency,ωpw (yr−1) . . . – 0.10368 – –
Amplitude of wave 1 cosine and sine terms,
Acos,1;Asin,1 (10−4 s). . . . . . . . . . . . . . . . . . . . – 2(13); 4.7(21) – –

Fit and data set parameters

Pulsar name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J1824−2452 J1939+2134 J2124−3358

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53518.8−54544.9 46024.8−54526.9 49489.9−54528.9
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . 89 180 416
rms timing residual (µs) . . . . . . . . . . . . . . . . . . . . 0.986 0.354 4.03
Reference epoch for P,α,
δ and DM determination . . . . . . . . . . . . . . . . . . . 54219 52601 53174

Measured Quantities

Right ascension,α (J2000.0). . . . . . . . . . . . . . . . 18:24:32.00796(2) 19:39:38.561297(2) 21:24:43.85347(3)
Declination,δ (J2000.0) . . . . . . . . . . . . . . . . . . . . −24:52:10.824(6) +21:34:59.12950(4) −33:58:44.6667(7)
Proper motion inα, µα cos δ (mas yr−1) . . . . – 0.072(2) −14.12(13)
Proper motion inδ, µδ (mas yr−1) . . . . . . . . . . −9(5) −0.415(3) −50.34(25)
Annual parallax,π (mas) . . . . . . . . . . . . . . . . . . . – 0.13(13) 3.1(11)
Dispersion measure, DM (cm−3 pc) . . . . . . . . . 120.502(2) 71.0227(9) 4.601(3)
Pulse frequency,ν (Hz) . . . . . . . . . . . . . . . . . . . . 327.4055946921(6) 641.928233642(12) 202.793893879496(2)
Pulse frequency derivative,ν̇ (10−16 s−2) . . . −1736.5(3) −429.1(6) −8.4597(2)

Prewhitening Terms

Fundamental wave frequency,ωpw (yr−1) . . . 0.44734 0.14996 –
Amplitudes of cosine and sine terms (10−4 s):
wave 1:Acos,1;Asin,1 . . . . . . . . . . . . . . . . . . . . . −20(6); 2.1(14) 286(41);−413(60) –
wave 2:Acos,2;Asin,2 . . . . . . . . . . . . . . . . . . . . . – 30(5); 84(12) –
wave 3:Acos,3;Asin,3 . . . . . . . . . . . . . . . . . . . . . – −21(3);−5.8(9) –
wave 4:Acos,4;Asin,4 . . . . . . . . . . . . . . . . . . . . . – 3.7(5);−2.9(5) –
wave 5:Acos,5;Asin,5 . . . . . . . . . . . . . . . . . . . . . – 0.04(3); 0.68(9) –



Table 4.Timing parameters for binary PSRs J1022+1001, J1600−3053, J1713+0747, J1857+0943, J1909−3744 and J2145−0750. See caption of Table 3 for
more information.

Fit and data set parameters

Pulsar name . . . . . . . . . . . . . . . . . . . . . . . . . . . J1022+1001 J1600−3053 J1713+0747 J1857+0943 J1909−3744 J2145−0750

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52649.7−54528.5 52055.7−54544.6 49421.9−54546.8 46436.7−54526.9 52618.4−54528.8 49517.8−54547.1
Number of TOAs. . . . . . . . . . . . . . . . . . . . . . . 260 477 392 376 893 377
rms timing residual (µs) . . . . . . . . . . . . . . . . 1.63 1.12 0.198 1.14 0.166 1.88
Reference epoch for P,α, δ

and DM determination . . . . . . . . . . . . . . . . . . 53589 53283 54312 50481 53631 53040

Measured Quantities

Right ascension,α (J2000.0) . . . . . . . . . . . . 10:22:58.003(3) 16:00:51.903798(11) 17:13:49.532628(2) 18:57:36.392909(13) 19:09:47.4366120(8) 21:45:50.46412(3)
Declination,δ (J2000.0) . . . . . . . . . . . . . . . . +10:01:52.76(13) −30:53:49.3407(5) +07:47:37.50165(6) +09:43:17.2754(3) −37:44:14.38013(3) −07:50:18.4399(14)
Proper motion inα, µα cos δ (mas yr−1) . −17.02(14) −1.06(9) 4.924(10) −2.64(3) −9.510(7) −9.66(15)
Proper motion inδ, µδ (mas yr−1). . . . . . . – −7.1(3) −3.85(2) −5.46(4) −35.859(19) −8.9(4)
Annual parallax,π (mas) . . . . . . . . . . . . . . . 1.8(6) 0.2(3) 0.94(10) 1.1(4) 0.79(4) 1.6(5)
Dispersion measure, DM (cm−3 pc) . . . . . 10.261(2) 52.3262(10) 15.9915(2) 13.300(4) 10.3934(2) 8.9977(14)
Pulse frequency,ν (Hz) . . . . . . . . . . . . . . . . . 60.7794479762157(4) 277.9377070984926(17) 218.8118404414362(3) 186.494078620232(2) 339.31568740949071(10) 62.2958878569665(6)
Pulse frequency derivative,ν̇ (10−16 s−2) −1.6012(2) −7.3390(5) −4.08379(3) −6.20495(6) −16.14819(5) −1.15588(3)

Orbital period,Pb (days) . . . . . . . . . . . . . . . 7.8051302826(4) 14.3484577709(13) 67.825130963(17) 12.32719(4) 1.533449474590(6) 6.83893(2)
Orbital period derivative,Ṗb (10−13) . . . . – – 41(20) 3(3) 5.5(3) 4(3)
Epoch of periastron passage,T0 (MJD). . . 53587.3140(6) 53281.191(4) 54303.6328(7) 50476.095(8) – 53042.431(3)
Projected semi-major axis,x = a sin i (s) 16.7654074(4) 8.801652(10) 32.3424236(3) 9.230780(5) 1.89799106(7) 10.1641080(3)
ẋ (10−14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5(10) −0.4(4) – – −0.05(4) −0.3(3)
Longitude of periastron,ω0 (deg) . . . . . . . . 97.75(3) 181.85(10) 176.190(4) 276.5(2) – 200.63(18)
Orbital eccentricity,e (10−5) . . . . . . . . . . . 9.700(4) 17.369(4) 7.4940(3) 2.170(6) – 1.930(6)
κ = e sin ω0 (10−8) . . . . . . . . . . . . . . . . . . . – – – – −0.4(4) –
η = e cos ω0 (10−8) . . . . . . . . . . . . . . . . . . . – – – – −13(2) –
Ascending node passage,Tasc (MJD) . . . . – – – – 53630.723214894(4) –
Periastron advance,ω̇ (deg/yr) . . . . . . . . . . . – – – – – 0.06(6)
Sine of inclination angle,sin i . . . . . . . . . . . 0.731 0.8(4) – 0.9990(7) 0.9980(2) –
Inclination angle,i (deg) . . . . . . . . . . . . . . . . 472 – 78.6(17) – – –
Companion mass,Mc (M⊙) . . . . . . . . . . . . 1.053 0.6(15) 0.20(2) 0.27(3) 0.212(4) –
Longitude of ascending node,Ω (deg) . . . . – – 67(17) – – –



Table 5.Timing parameters for binary PSRs J0613−0200, J1045−4509, J1603−7202, J1643−1224, J1732−5049 and J2129−5721. See caption of Table 3
for more information.

Fit and data set parameters

Pulsar name . . . . . . . . . . . . . . . . . . . . . . . . . . . J0613−0200 J1045−4509 J1603−7202 J1643−1224 J1732−5049 J2129−5721

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51526.6−54527.3 49405.5−54544.5 50026.1−54544.7 49421.8−54544.7 52056.8−54544.8 49987.4−54547.1
Number of TOAs. . . . . . . . . . . . . . . . . . . . . . . 190 401 212 241 129 179
rms timing residual (µs) . . . . . . . . . . . . . . . . 1.52 6.70 1.98 1.94 3.23 2.20
Reference epoch for P,α, δ

and DM determination . . . . . . . . . . . . . . . . . . 53114 53050 53024 49524 53300 54000

Measured Quantities

Right ascension,α (J2000.0) . . . . . . . . . . . . 06:13:43.975142(11) 10:45:50.18951(5) 16:03:35.67980(4) 16:43:38.15544(8) 17:32:47.76686(4) 21:29:22.76533(5)
Declination,δ (J2000.0) . . . . . . . . . . . . . . . . −02:00:47.1737(4) −45:09:54.1427(5) −72:02:32.6985(3) −12:24:58.735(5) −50:49:00.1576(11) −57:21:14.1981(4)
Proper motion inα, µα cos δ (mas yr−1) . 1.84(8) −6.0(2) −2.52(6) 5.99(10) – 9.35(10)
Proper motion inδ, µδ (mas yr−1). . . . . . . −10.6(2) 5.3(2) −7.42(9) 4.1(4) −9.3(7) −9.47(10)
Annual parallax,π (mas) . . . . . . . . . . . . . . . 0.8(7) 3.3(38) – 2.2(7) – 1.9(17)
Dispersion measure, DM (cm−3 pc) . . . . . 38.782(4) 58.137(6) 38.060(2) 62.409(2) 56.822(6) 31.853(4)
Pulse frequency,ν (Hz) . . . . . . . . . . . . . . . . . 326.600562190182(4) 133.793149594456(2) 67.3765811408911(5) 216.373337551614(7) 188.233512265437(3) 268.359227423608(3)
Pulse frequency derivative,ν̇ (10−16 s−2) −10.2308(8) −3.1613(3) −0.70952(5) −8.6438(2) −5.0338(12) −15.0179(2)

Orbital period,Pb (days) . . . . . . . . . . . . . . . 1.1985125753(1) 4.0835292547(9) 6.3086296703(7) 147.01739776(5) 5.262997206(13) 6.625493093(1)
Epoch of periastron passage,T0 (MJD). . . 53113.98(2) 53048.98(2) – 49577.9689(13) – 53997.52(3)
Projected semi-major axis,x = a sin i (s) 1.0914444(3) 3.0151325(10) 6.8806610(4) 25.072614(2) 3.9828705(9) 3.5005674(7)
ẋ (10−14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – – 1.8(5) −4.9(5) – 1.1(6)
Longitude of periastron,ω0 (deg) . . . . . . . . 54(6) 242.7(16) – 321.850(3) – 196.3(15)
Orbital eccentricity,e (10−5) . . . . . . . . . . . 0.55(6) 2.37(7) – 50.578(4) – 1.21(3)
κ = e sinω0 (10−6) . . . . . . . . . . . . . . . . . . . – – 1.61(14) – 2.20(5) –
η = e cos ω0 (10−6) . . . . . . . . . . . . . . . . . . . – – −9.41(13) – −8.4(4) –
Ascending node passage,Tasc (MJD) . . . . – – 53309.3307830(1) – 51396.366124(2) –
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2.4 Timing Results

TheTEMPO2 software package (Hobbs et al. 2006) was used to cal-
culate the residuals from the TOAs and initial timing solutions (Ta-
ble 1). In order to account for the unknown instrumental delays and
pulsar-dependent differences in observing setup, arbitrary phase-
offsets were introduced between the data from different backends.
Where available, data at an observing frequency of 685 MHz were
included in an initial fit to inspect visually for the presence of dis-
persion measure (DM) variations. In the case of PSRs J1045−4509,
J1909−3744, J1939+2134 and J0437−4715, such variations were
significant and dealt with in the timing software through a method
similar to that presented by You et al. (2007). The average DM
values presented in Tables 3, 4 and 5 were determined from the
20 cm data exclusively. The uncertainties in these DM valuesdo not
take into account possible pulse shape differences betweenthe pro-
files at these slightly varying frequencies. We updated all the pul-
sar ephemerides to use International Atomic Time (implemented
as TT(TAI) in TEMPO2) and the DE405 Solar System ephemeris
(Standish 2004).

In order to correct for any underestimation of TOA uncer-
tainties resulting from (amongst others) the application of CPSR2-
based template profiles to the FB and FPTM data (as mentioned
in §2.3) and to allow comparison of our timing model parameters
to those published elsewhere, the TOA uncertainties were multi-
plied by error factors (so-called “EFACs”) that are dependent on
the pulsar and observing system. Specifically, this part of the anal-
ysis was performed as follows. First the timing data from each ob-
serving system were prewhitened by fitting harmonically related
sine/cosine pairs if required. Next the TOA uncertainties were mul-
tiplied by an EFAC value that produced a reducedχ2 value of unity
for that prewhitened subset of the data. Because of potential non-
Gaussian noise in the data, application of these backend-specific
EFACs does not necessarily result in a reducedχ2 value of unity for
the entire, recombined data set. To account for such non-Gaussian
noise in the data, a ‘global’ EFAC was applied to the entire data set,
making the reducedχ2 after prewhitening equal to unity and in-
creasing the parameter uncertainties reported in the timing models
appropriately. As mentioned the prewhitening method was based
on fitting of sine/cosine pairs to the data, according to the following
formula described by Martin (2001) (and replicated in Hobbset al.
2006):

∆R =

nH
X

k=1

Asin,k sin(kωpw∆t) + Acos,k cos(kωpw∆t)

wherek runs over all sine/cosine pairs,nH is the total number of
harmonically related pairs fitted,Acos,k andAsin,k are respectively
the amplitude of thekth cosine and sine waves andωpw is the fun-
damental frequency derived from:

ωpw =
2π

T (1 + 4/nH)

with T the length of the data set. If prewhitening terms were in-
cluded in the final fit, we provide the values forωpw, Acos,k and
Asin,k as part of our timing model.

Because the potential non-Gaussian noise present in the data
is the subject of our investigations in the remaining sections of this
paper, the prewhitening terms as well as the global EFACs were not
included in any subsequent analysis. The residuals plottedin Figure
1 and the parameters presented in Table 2 therefore do not include
prewhitening terms or global EFACs.

The system-specific EFACs were generally less than two, with

the only major outliers being the CPSR2 data of PSR J1939+2134
with an EFAC of 5.27 and the 32-min CPSR2 integrations (pre-
2004 CPSR2 data) of PSR J1643−1224, which have an EFAC
of 4.9. In the former case this large EFAC may be caused by in-
complete prewhitening, as the non-Gaussian noise is badly mod-
elled by polynomials or sine/cosine pairs. The underestimation
of PSR J1643−1224 TOA uncertainties is likely caused by the
low signal-to-noise ratio of these observations, which causes the
Fourier phase gradient method to underestimate TOA errors (as
previously reported by Hotan et al. 2005). We note that the EFAC
for the 64 minute integrations is much lower, at 2.5. In deriving the
timing models, the global EFAC was at most 1.1 and for more than
half of our sources less than 1.05.

The fact that most of our EFAC values are close to unity and
show little variation with backend, suggests that the parameter and
error estimates are fairly robust. In order to account for the different
sensitivity of the backends used and to limit effects of scintillation
on our timing, we opt for a weighted analysis. It is thereforeimpor-
tant to consider the impact of the TOA errors and applied EFACs
on the different parts of this analysis. Given that for most pulsars
the EFACs applied to the different backends are nearly equal, the
resulting timing models will be little affected by these EFAC val-
ues. The reported uncertainties on the timing model parameters will
be affected but will be comparable to previous publications, since
our analysis method is similar. A full error analysis (as suggested
by Verbiest et al. 2008) is needed to provide any more reliable pa-
rameter uncertainties. Since the focus of this present paper is on
the overall timing stability and implications for pulsar timing ar-
ray science, we defer such error analysis (and the interpretation of
any previously unpublished parameters in our timing models) to a
later paper. We have, however, investigated the effect of weight-
ing and EFACs on the timing stability analysis (§3), but have not
uncovered any unexpected deviations beyond statistical noise. We
therefore conclude that the weighting and applied EFACs do not
invalidate our analysis.

A summary of the lengths of the data sets and the achieved rms
residual can be found in Table 2, highlighting the superior resid-
ual rms of PSRs J1909−3744, J0437−4715 and J1713+0747 when
compared to other pulsars. The timing residuals for our datasets are
presented in Figure 1 and the timing models are presented in Tables
3, 4 and 5, where2σ errors are given, in accordance with previous
practice. We encourage observers to use the improved modelswhen
observing. We also note that all but a few of the parameters inour
timing models are consistent with those published previously.

3 PULSAR TIMING STABILITY

In §1, we demonstrated that one of two vital questions relating to
the potential of PTAs to detect a GWB is whether a low residual
rms can be maintained over long timespans (a property we refer to
as “timing stability”). Effectively, this question breaksdown into
two parts: to what degree of significance low-frequency noise is
present in our pulsar timing data and how any such low-frequency
noise can be expected to affect sensitivity to a GWB. In orderto an-
swer this question fully, a spectral-analysis-based investigation of
pulsar timing residuals that includes identification and modelling
of potential non-Gaussian noise sources, would be required. Be-
cause of various pulsar timing-specific issues such as clustering of
data, large gaps in data sampling and large variations in error-bar
size, however, standard spectral analysis methods fail to provide
reliable power spectra of pulsar timing data. We therefore use the
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alternative approach provided by theσz statistic, as described by
Matsakis et al. (1997). A brief explanation of this statistic, along
with a presentation of theσz values of our data is presented in§3.1
and a discussion of these results in terms of PTA-science is pro-
vided in§3.2.

3.1 σz Stability Analysis

Originally proposed by Matsakis et al. (1997), theσz statistic is de-
fined as:

σz(τ ) =
τ 2

2
√

5
〈c2

3〉1/2,

where〈〉 denotes the average over subsets of the data,c3 is deter-
mined from a fit of the polynomial

c0 + c1(t − t0) + c2(t − t0)
2 + c3(t − t0)

3

to the timing residuals for each subset andτ is the length of the
subsets of the data. In order for theσz values to be independent
of each other, we useτ = T, T/2, T/4, T/8, . . . only. The inter-
pretation of this statistic in terms of power spectra deserves some
attention. As presented by Matsakis et al. (1997), a power spectrum
with spectral indexβ:

P (ν) ∝ fβ

would translate into aσz curve:

σz(τ ) ∝ τµ,

where the spectral indices are related as:

µ =

(

− 1
2
(β + 3) if β < 1

−2 otherwise.
(5)

Equation (5) implies that spectra have different slopes in aσz

graph than in a power spectrum. Along with theσz graphs for our
data sets, Figure 2 provides some examples of spectra for guidance:
lines with a slope of−3/2 (dotted lines in Figure 2) represent spec-
trally white data (β = 0 into Equation (5) givesµ = −3/2) and
a GWB with a spectral indexα = −2/3 in the gravitational strain
spectrum (and therefore a spectral slopeβ = −13/3 in the timing
residual spectrum, as follows from equations (2) and (3)) would
have a positive slope of2/3 in σz (dashed lines).

Comparison of such theoretical slopes to the data is, however,
non-trivial since the data are strongly affected by effectsfrom sam-
pling and fitting. As an illustration of such effects, the top-left plot
of Figure 2 shows twoσz curves derived from simulations. The
first one is the full line that approximates theσz curve for PSR
J1713+0747. In this case theσz values of 1000 simulations of white
noise with the timing rms and sampling of the PSR J1713+0747
data set were averaged. This curve is not perfectly parallelto the
theoretical curve with slope−3/2 due to sampling, varying TOA
uncertainties and model fitting. Comparison of the white noise sim-
ulations with the actual PSR J1713+0747 data indicates thatthere is
not a significant, steep red-noise process affecting the timing resid-
uals for this pulsar. The second simulation in the top-left plot of
Figure 2 is the dot-dashed line, which is the averageσz graph of
2000 simulations of white noise with an artificial GWB and the
sampling of the PSR J1939+2134 data set, fitted for pulse period
and spindown. This simulated curve does not reach the theoretical
slope of2/3 because of flattening off at low frequencies caused by
sampling, fitting and leakage resulting from these. This simulation
also demonstrates that the PSR J1939+2134 curve is significantly

steeper than a simulated GWB, implying that this pulsar willmost
likely not be very useful for long-term PTA projects, although its
low rms residual on short time spans might make it useful for de-
tection of burst-type sources.
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Figure 2. σz stability parameter for the 20 pulsars in our sample. The dotted slanted lines represent white noise levels of 100 ns (bottom) and 10µs (top);
the dashed slanted line shows the steepness introduced to pre-fit residuals by a hypothetical GWB (see§1); pulsars whose curve is steeper than this line (like
PSR J1939+2134), can therefore be expected to be of little use to PTA efforts on long timescales. The top left figure further shows the averageσz values
resulting from 1000 simulations of white noise residuals sampled at the times of the PSR J1713+0747 data set and fitted forthe PSR J1713+0747 timing
model parameters (full line). This demonstrates that the PSR J1713+0747 data do not - within the sensitivity provided bytheσz statistic - contain a significant,
steep red-noise process. The dash-dotted line in the top left figure shows the average of 2000 simulations for white noisecombined with a GWB, sampled at
the times of the PSR J1939+2134 data set and fitted for pulse period and period derivative. These simulated results provide an example of the combined effect
sampling and model fitting can have on theσz statistic, even in the case of white noise.



Figure 3. σz graphs for all pulsars in our sample, showing both weighted (black and green lines) and unweighted (red and blue lines) results, as well as results
including EFACs (black and red lines) and excluding EFACs (green and blue lines). The dashed lines represent theoretical white noise at levels of 100 ns and
10µs. The EFAC values of the PSR J0437−4715 data were lost in processing, so the green and blue curves are missing for that particular pulsar. For all other
pulsars all four curves are present, though they do frequently overlap.



14 J. P. W. Verbiest, et al.

Theσz graphs of our data are shown in Figure 2. A compar-
ison of these curves to those obtained from an unweighted analy-
sis or from an analysis that does not contain the EFAC values de-
scribed in§2.4, is presented in Figure 3, a colour version of which is
available online. This graph demonstrates that use of weighting or
EFACs does not affect the data in any statistically significant man-
ner, other than to decrease the effect of the white noise component
in case of scintillating pulsars.

Comparison of the PSR J1713+0747 and PSR J1939+2134
data with the simulated curves shown, along with the invariability
of the shape ofσz plots to weighting or application of error factors,
shows that theσz parameter provides a good first-order discrimina-
tion between pulsars that do not exhibit significant, steep red noise
(like PSR J1713+0747) and those that do have timing instabilities
which could mask a GWB (like PSR J1939+2134).

3.2 Timing Stability Conclusions

Figure 2 shows that PSR J1939+2134 has red noise with a level and
steepness that will limit its use in GWB-detection efforts that last
more than about two years. Four other pulsars (PSRs J0613−0200,
J1024−0719, J1045−4509 and J1824−2452) show some indica-
tion of similar red noise, but longer timing and lower white-noise
levels are needed to determine this with statistical significance. For
all the other pulsars we have no evidence that the red noise that may
be present in the timing residuals below the white-noise level has
a spectral index that prevents GWB detection on timescales of five
years to a decade.

We have been unable to detect timing instabilities with an am-
plitude and spectral slope that could mask a GWB in the timing
data of PSRs J1713+0747 and J1744−1134, notwithstanding their
long data spans and low timing rms which should make them highly
sensitive to any low-frequency noise. Using Equation (4), it can be
shown that the data sets of PSRs J1713+0747 and J0437−4715 al-
ready meet the requirements for a ten-year long PTA experiment,
proving that at least for some pulsars the timing stability and rms
residual required to detect a GWB on timescales of ten years or
more is achievable. The challenge for such long-term projects will
therefore be to find more pulsars like these, or to replicate these
results for other existing pulsars, by increasing the sensitivity of
observing systems.

It must be noted that the study of irregularities in pulsar tim-
ing data (often referred to as “timing noise”) can be much more
extensive than presented here. Given our main aim of assessing the
impact on PTA science and the absence of clear timing noise in
most of our data sets, precise modelling or bounding of timing ir-
regularities as well as a thorough discussion of the potential sources
of any observed timing instabilities, has not been includedin this
analysis.

4 ANALYSIS OF RESIDUAL RMS

As an alternative to the long-term PTA detection efforts discussed
in the previous section, a shorter-term detection is possible if tim-
ing at lower residual rms is achievable. The standard scenario for a
(relatively) short-term GWB detection by a PTA requires fiveyears
of weekly observations with a timing rms of 100 ns for 20 MSPs
(Jenet et al. 2005). Since a residual rms of 100 ns has never been
maintained over five years, the possibility that some intrinsic prop-
erty of MSPs induces instabilities at that level, remains open. In
this section, we will address that issue by evaluating how much the

timing rms of some of our most precisely timed pulsars may be
reduced.

We separate three different categories of contributions tothe
pulsar timing residuals:

Radiometer noiseσRad: The Gaussian noise component that
scales with the radiometer equation and which is mainly deter-
mined by the shape and signal-to-noise (S/N) ratio of the observed
pulse profiles.

Frequency-systematic effectsσν : This category of noise contri-
butions contains most effects that produce timing residuals depen-
dent on the observing frequency. This includes interstellar effects
such as interstellar scintillation and DM variations.

Temporal-systematic effectsστ : This category contains all
time-dependent effects such as calibration errors, instabilities in
the observing systems, clock errors, errors in the Solar System
ephemerides, GWs and intrinsic pulsar timing noise.

As it is impossible to get direct measures of the three contri-
butions listed above, we base our analysis on the following three
measurements:

Total timing rms σ: This is simply the timing residual rms of
the data considered. It contains all three effects:

σ2 = σ2
Rad + σ2

ν + σ2
τ . (6)

Sub-band rmsσsb: In §4.2, we will introduce this new measure
which is 1/

√
2 times the weighted rms of the offset between the

residuals of two simultaneous observing bands with different centre
frequencies. Since the observations in the two observing bands are
simultaneous, their offset is determined by the radiometernoise and
by frequency-systematic effects (as the observing bands are centred
at slightly different frequencies). We can therefore write:

σ2
sb = σ2

Rad + σ2
ν . (7)

Theoretical radiometer noiseσRad: In §4.1, we will calculate
σRad directly from the pulse profiles used in our timing.

Using these three measures and equations (6) and (7), the three
contributions to the timing residuals can be isolated, the results of
which are described in§4.3.

Our analysis will be based on the CPSR2 data of PSRs
J1909−3744, J1713+0747 and J1939+2134. We restrict this analy-
sis to the CPSR2 data because it is of superior quality to the data of
older backend systems (see§2.2) and because it consists of the five
most densely sampled years of observations. We focus on three of
the most precisely timed pulsars in order to obtain the best limits
on achievable residual rms. In doing so, we omit PSR J0437−4715
because the advanced calibration schemes used in its analysis (see
Verbiest et al. 2008; van Straten 2004, 2006) complicates our ef-
forts and because reported non-Gaussian noise in the timingdata
of this pulsar (Verbiest et al. 2008) may imply an inferior limit to
that derived from PSRs J1909−3744 and J1713+0747. Note that
the purpose of this analysis is to uncover thepotential limit for
high-precision timing: it is already known (see e.g.§3) that MSPs
have different amounts of time-dependent noise, so the limit we
will derive from PSRs J1909−3744 and J1713+0747 does not have
to hold for all MSPs. However, it does suggest that other pulsars
may achieve similar rms residual and that a PTA-size sample of 20
MSPs at such rms residual may mainly depend on increased sensi-
tivity of current observing systems and new discoveries in ongoing
and future surveys.
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Table 6.Breakdown of weighted timing residuals for three selected pulsars. Given are the total timing rms of the∼5 years of CPSR2 data (σ), the sub-band
timing rms (σsb), the radiometer noise (σRad), the temporal systematic (στ ) and the frequency systematic (σν ) contributions to the timing rms. All values are
in ns and apply to 64 min integrations. See§4 for more information.

Pulsar name σ σsb σRad στ σν

(1) (2) (3) (4) (5) (6)

J1909−3744 166 144 131 83 60
J1713+0747 170 149 105 82 106
J1939+2134 283 124 64 254 106

4.1 Theoretical Estimation of Radiometer Noise,σRad

The level at which the radiometer noise adds to the timing residu-
als can be determined based on the pulsar’s observed pulse profile
shape and brightness, as described by van Straten (2006). Equa-
tion (13) of that publication provides the following measure (notice
we only consider the total intensity,S0, to allow direct comparison
with our timing results):

σRad = P ×
√

V = P ×
 

4π2

Nmax6N/2
X

m=1

ν2
m

S2
0,m

ς2
0

!−0.5

, (8)

whereνm is the mth frequency of the Fourier transform of the
pulse profile,S2

0,m is the total power at that frequency,ς0 is the
white noise variance of the profile under consideration,N is the
total number of time bins across the profile andNmax is the fre-
quency bin where the Fourier transform of the pulse profile reaches
the white noise level,ς0. V is the expected variance in the phase-
offset or residual,P is the pulse period andσRad is the residual rms
predicted for the pulse profile considered.

In order to use Equation (8) on our data, we first integrated all
our pulse profiles together, weighted by signal-to-noise ratio, after
which Equation (8) was applied to the final profile. Subsequently
σRad was renormalised to 64 min integrations through use of the
radiometer equation. In order to check this result, we also applied
the equation to all individual pulse profiles contained in this anal-
ysis and averaged the results in a weighted way - resulting inthe
same answer, which is given in column four of Table 6. The value
for PSR J1909−3744 shows that even at this low residual rms, ra-
diometer noise dominates the timing rms. Applying this method to
the other MSPs in our sample, we found that almost all our timing
residuals are dominated by radiometer noise. For more than half
of our sample of 20 MSPs,σRad is of the order of a microsecond
or more. This demonstrates the need for longer integration times,
larger bandwidth and/or larger collecting area.

4.2 Estimating Frequency-Dependent Effects

As described in§2.2, the CPSR2 pulsar backend records two ad-
jacent, 64 MHz-wide frequency bands simultaneously. This allows
determination of a unique measure of a sub-set of timing irregular-
ities, which we will call the “sub-band rms”,σsb:

σsb =
1√
2

v

u

u

u

t

P

i

(ri,m−ri,n)
2

e2
i,mn

P

i 1/e2
i,mn

, (9)

where the sums run over all observing epochsi, ri,m andri,n are
the residuals of either observing band (named m and n respectively)

at epochi andei,mn =
q

e2
i,m + e2

i,n is the average TOA error at

epochi. Effectively, the sub-band rms is1/
√

2 times the weighted

rms of the offset between the residuals of the two bands. Thisim-
plies it contains all contributions to the total rms that arenot time-
dependent but either statistically white or dependent on the observ-
ing frequency, as described earlier. Note, however, that many of
these effects have both a temporal and frequency component.Given
our sampling, it should therefore be understood that (specifically in
the case of DM variations) only part of these effects is contained in
σν , while the remaining contributions are contained inστ .

The sub-band rms for the three selected pulsars is presentedin
column three of Table 6.

4.3 Discussion

Based on equations (6) and (7) and the three measuresσ, σsb and
σRad determined in the preceding paragraphs, the three contribu-
tions to the rms (σRad, σν andστ ) can now be estimated. Their
values are presented in columns 4, 5 and 6 of Table 6. In order to
assess the potential for 100 ns timing of these sources over afive-
year timescale, we will now discuss the possible means of reducing
these three contributions.

The radiometer noiseσRad scales for different telescopes or
observing systems according to the radiometer equation:

σRad ∝ Tsys

Aeff

√
Bt

(10)

whereB is the bandwidth of the observing system used,t is the
integration time,Aeff = η πD2

4
is the effective collecting area of

the telescope (withη the aperture efficiency andD the telescope
diameter) andTsys is the system temperature of the receiver.

The frequency systematic contributions are not as easily
scaled for different observing systems, but they can be de-
creased and research on this front is progressing (You et al.2007;
Hemberger & Stinebring 2008; Walker et al. 2008). Also, by reduc-
ing the radiometer noise, any measurements of DM variationswill
become more precise, which will enhance corrections for these ef-
fects and therefore decrease the contribution ofσν . We also note
that since these effects are frequency dependent, the employment of
very large bandwidth receivers or coaxial receiver systemssuch as
the 10/50 cm receiver at the Parkes observatory, may lead to highly
precise determination and correction of these effects. Furthermore,
increased collecting area and bandwidth may enable future tim-
ing observations at higher observational frequencies, which would
limit the size of these effects. We therefore suggest thatσν does
not ultimately limit the achievable rms residual, but may largely
be corrected for if current research and technological development
progress.

The wide variety of sources that add to the temporal system-
atic make predictions about its future evolution hard. Sources such
as intrinsic pulsar timing noise are (as yet) impossible to mitigate.
Errors in the terrestrial clocks or in the Solar System ephemerides
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are expected to decrease as better models become available or
as timing arrays provide their own improved solutions for these
models. Instabilities in the observing system may to some degree
be mitigated by improved calibration methods (van Straten 2004,
2006). Simultaneous observations of a single source at multiple
observatories may also lead to detection and correction of instru-
mental instabilities and the time-dependent effect of DM variations
may also be mitigated, as explained above.

Following from the above, we stress the fact that all contribu-
tions toσν andσRad may be mitigated, but that certain contribu-
tions toστ cannot be corrected. This implies that this last class of
effects will ultimately limit the residual rms that can be reached.
We will therefore use the temporal systematic contributionto the
rms (στ , column five in Table 6) as an upper limit on the poten-
tial rms residual of the MSPs under investigation. Note thatthis
is a conservative upper limit since significant protions ofστ may
be expected to be mitigated. However, without relative quantifica-
tion of the various contributions toστ , this limit cannot be reliably
decreased.

Given the discussion above, we note that the potential timing
residual rms of PSRs J1909−3744 and J1713+0747 is predicted to
be below 100 ns on a five-year timescale. This implies that thestan-
dard scenario of 100 ns timing over five years is possible provided
techniques currently being developed for mitigation of frequency-
dependent effects are successful, more sensitive observing systems
are used and more bright, stable MSPs like PSRs J1909−3744 and
J1713+0747 are found.

5 PROSPECTS FOR GRAVITATIONAL WAVE
DETECTION

Jenet et al. (2005) derived the expected sensitivity of a PTAto
a GWB with given amplitude,A, both for homogeneous arrays
(where all pulsars have comparable timing residuals) and inhomo-
geneous arrays. They also pointed out the importance of prewhiten-
ing4 the residuals to increase sensitivity at larger GWB amplitudes.
In the current section, we will build upon their analysis to provide
more realistic predictions for ongoing and future timing arrays. We
extend their analysis in three fundamental ways.

Firstly, we use the rms timing residuals presented in Table 2.
These results provide an inhomogeneous set of rms’s with a realis-
tic spread. We assume the residuals are statistically whiteand will
therefore not change with the timescale of the timing array project.
Our analysis in§3 shows that for most pulsars this assumption is
reasonable, especially on timescales of order five years.

Secondly, we do not apply exactly the same algorithm as
Jenet et al. (2005). In Appendix A, we present a derivation ofPTA
sensitivity to a GWB in a manner that provides some guidance on
analysing the data. We assume that the prewhitening and correla-
tion are handled together by computing cross-spectra and weesti-
mate the amplitude of the GWB directly rather than using the nor-
malised cross correlation function. We assume that the non-GWB
noise is white, but can be different for each pulsar. Our results are
very close to those of Jenet et al. (2005) and using our methodwe
successfully reproduced the scaling law, Equation (4). Theanalysis

4 In this context, prewhitening refers to a technique that flattens the power
spectrum of a time series by means of weighting. This flattening optimises
the sensitivity of a PTA to steep red spectra such as those introduced by a
GWB.

could be easily extended to include non-white noise if a model for
the noise were available.

Finally, in order to generalise the results from our Parkes data
to telescopes in other parts of the world, we scale the residuals
based on realistic parameters for various PTA efforts listed in Ta-
ble 7. In doing so, we scaleσRad (see§4) according to Equation
(10). As discussed in§4.3, some improvements inσν andστ can
be expected in coming years, especially as the radiometer noise is
decreased. While quantification of any such improvement is practi-
cally impossible, we will apply the same radiometer scalingto σν

as we apply toσRad and assumeστ to be constant at80 ns for all
pulsars at all telescopes. This may provide a slight disadvantage
for larger telescopes, but overall we consider this a reasonable yet
conservative approach.

5.1 Ongoing PTA Projects

We consider five ongoing PTA efforts:

Current: Refers to the data presented in this paper, using the
longest overlapping time span of the sample: five years. Thisig-
nores the fact that the PSR J1824−2452 data set is shorter, but this
globular cluster pulsar may not prove useful in a PTA projectlast-
ing longer than a few years anyway. We therefore assume that a
replacement is found and has identical timing rms over a timespan
of five years.

Predicted PPTA: Assumes the usage of 256 MHz of bandwidth
at the Parkes telescope, which implies a four-fold bandwidth in-
crease and therefore a two-fold decrease in timing rms. The PPTA
is the only one to be considered for more than five years, mainly
in order to demonstrate the large impact a doubling of campaign
length can have, but also because several years of high precision
timing data with that bandwidth do already exist (Manchester 2008)
for all 20 MSPs.

NANOGrav: Assumes Arecibo gain for the ten least well-timed
pulsars and GBT gain for the ten best-timed pulsars, in orderto get
a fairly equal rms for all 20 MSPs. (Since we considerστ an upper
limit on the rms residual, the advantage of Arecibo over the GBT
is limited for the brightest sources.)

EPTA: Assumes monthly observations with five 100 m-class
telescopes (Janssen et al. 2008).

EPTA–LEAP5: Interferometrically combines the five tele-
scopes of the EPTA to form a single, larger one. This decreases
the number of observations, but increases the gain.

An important caveat to this analysis is that several of the pul-
sars under consideration cannot be observed with most Northern
telescopes, because of the telescope declination limits. We there-
fore assume stable MSPs to be discovered in the Northern hemi-
sphere. As mentioned before, we also assume that progress will be
made in the mitigation of frequency-dependent ISM and calibration
effects. Finally, this analysis is based on the Parkes data presented
in this paper and therefore assumes systematic effects to beat most
at the level of the Parkes observing system used.

The sensitivity curves presented in Figure 4 seem to justify
cautious optimism for GWB detection through PTA experiments
on timescales of five to ten years, provided current models of
GWBs are correct. While none of the curves in Figure 4 reach
the minimum predicted GWB Amplitude of10−15 at a detection-
significance level of three, their sensitivity can be expected to in-

5 Large European Array for Pulsars
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crease up to an order of magnitude through extension of the cam-
paigns to a decade-long timescale, as illustrated by the difference
between the “Predicted PPTA” and “Current sensitivity” curves.
The GWB predictions may, however, change if other effects such
as black-hole binary stalling occur. The models do, furthermore,
rely on a substantial number of poorly determined input parame-
ters, such as what fraction of galaxy growth happens by merging
(Sesana et al. 2009). Since only the merging of galaxies results in
binary black holes and hence contributes to the GWB, this mass
fraction is crucial for any reliable prediction of GWB strength.

As explained in§4.3, the temporal systematic contribution to
the rms,στ , is a conservative upper limit to the ultimate residual
rms. In this analysis of PTA efforts, however, we have used the
value of80 ns as a hard lower limit on the timing rms,σ. This limits
the potential for reduction of the rms and explains the equivalence
of the NANOGrav and EPTA–LEAP efforts. Finally, the strong de-
pendence on the timescale,T , of the project underscores the impor-
tance of timing stability analysis over much longer time spans and
continued observing. While ourσz analysis on PSR J1713+0747
provides the first evidence for high timing stability over timescales
beyond ten years, such timing stability must still be demonstrated
for many more MSPs.

5.2 Future PTA Projects

With the completion of the Square Kilometre Array (SKA)
pathfinders expected in three years time, we consider the poten-
tial of the Australian SKA Pathfinder (ASKAP), the South African
Karoo Array Telescope (MeerKAT) and the Chinese Five hundred
meter Aperture Spherical Telescope (FAST) for PTA programmes.
ASKAP is primarily designed for HI surveys and therefore sac-
rifices point source sensitivity for a wide field of view, whereas
MeerKAT’s design is better suited for point source sensitivity over
a more limited field of view. FAST is an Arecibo-type single dish
with a total diameter of 500 m of which 300 m is illuminated, re-
sulting in a substantially larger sky coverage than is possible with
Arecibo. The expected architecture for these telescopes islisted in
Table 7 - notice we assume phase-coherent combination of thesig-
nals of all ASKAP and MeerKAT dishes, effectively resultingin
a single telescope of diameter 107 m for MeerKAT and 76 m for
ASKAP.

The resulting sensitivity curves are drawn in Figure 5, along
with a hypothetical curve for the most sensitive telescope currently
operational, the Arecibo radio telescope. This figure clearly shows
the advantage MeerKAT holds over ASKAP for PTA work, in num-
ber of dishes, bandwidth and system temperature. The sensitivity
of Arecibo is much higher than that of either interferometric pro-
totype and is just inferior to FAST. As for the NANOGrav and
EPTA-LEAP projects analysed earlier, the advantage of FASTover
Arecibo is strongly limited by the bound of 80 ns we imposed on
the achievable rms residual.

Note the usefulness of Arecibo for PTA work is limited by
the restricted sky coverage and hence available pulsars. While both
MeerKAT and ASKAP can see large parts of the Southern sky, the
sky coverage of Arecibo as well as the short transit time makean
exclusively Arecibo-based PTA practically impossible; however, its
potential as part of a combined effort (Figure 4) or in a global PTA,
is undeniable if the level of systematic errors is small compared to
the radiometer noise. As for any Northern telescope, the usefulness
of FAST will mostly depend on the discovery of good timing MSPs
at positive declinations.

6 CONCLUSIONS

We have presented the first long-term timing results for the 20
MSPs constituting the Parkes Pulsar Timing Array (PPTA). We
have shown that only PSR J1939+2134 has timing instabilities that
limit its use for long-term GWB efforts, while the PSR J1713+0747
data already demonstrate the requirements for GWB detection on
a timescale of ten to fifteen years are achievable. Overall, the tim-
ing stability of the investigated MSPs was found to be encouraging
even though potential timing instabilities were detected in four pul-
sars (in addition to PSR J1939+2134).

It was demonstrated that even on our most precisely timed
MSPs, white noise is a dominant contribution, suggesting that our
residual rms will be much improved with current wide-bandwidth
systems. We placed a conservative upper limit of∼80 ns on intrin-
sic timing instabilities that will ultimately limit the residual rms.
We interpreted this result in the context of ongoing and future pul-
sar timing array projects, demonstrating the realistic potential for
GWB detection through pulsar timing within five years to a decade,
provided technical and data reduction developments evolveas ex-
pected. For PTA efforts in the Northern hemisphere, the discov-
ery of bright and stable MSPs in the Northern sky will be cru-
cial. Given the location of currently known MSPs, the prospects
of the MeerKAT SKA pathfinder as a gravitational-wave detector
are found to be particularly good.

APPENDIX A: PTA SENSITIVITY

In this Appendix we derive a simplified formalism for estimating
the sensitivity of a pulsar timing array (PTA) to a stochastic and
isotropic gravitational-wave background (GWB) of given ampli-
tude,A. This derivation produces results equivalent to those result-
ing from equation (14) of Jenet et al. (2005), but is more readily im-
plemented and inherently treats optimal weighting (or prewhiten-
ing) of the pulsar power spectra.

The detection statistic is the sample cross-covariance of the
residuals of two pulsarsi andj, separated by an angleθi,j :

R(θi,j) =
1

Ns

T
X

t=0

ri(t) × rj(t) (A1)

(whereri(t) is the residual of pulsari at time t, Ns is the num-
ber of samples in the cross covariance andT is the data span).
The expected value ofR(θi,j) is the covariance of the clock error,
which is 100% correlated, plus the cross covariance of the GWB,
σ2

GWζ(θi,j). The clock error can be included in the fit, but one must
also include its variance in the variance of the detection statistic. It
is better to estimate the clock error and remove it, which also re-
moves its “self noise”. So in subsequent analysis we neglectclock
noise and effects of possible Solar System ephemeris errors. We
model the pulsar timing residuals as a GWB term and a noise term:
r(t) = rGW(t) + rN(t), with variancesσ2

G andσ2
N. ζ(θi,j) is the

cross-correlation curve predicted by Hellings & Downs (1983), as
a function of the angle between the pulsars,θi,j :

ζ(θi,j) =
3

2
x log x − x

4
+

1

2

in whichx = (1 − cos θi,j)/2.
Since the detection significance will be limited by the variance
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Figure 4. Sensitivity curves for different PTA efforts. Note the “NANOGrav” and “EPTA – LEAP” curves are practically coincident.Gravitational waves are
predicted to exist in the range10−15 − 10−14 . See text and Table 7 for more information.

Table 7. Assumed parameters for future and ongoing PTA efforts. Besides the names of the different PTAs, the columns contain the number of telescopes
NTel, the observing bandwidthB, the telescope diameterD, aperture efficiencyη, system temperatureTsys, observing regularity and the duration of the
project,T .

PTA NTel B D η Tsys Observing T

name (MHz) (m) (K) regularity (yrs)

Current 1 64 64 0.6 25 weekly 5
Predicted PPTA 1 256 64 0.6 25 weekly 10
NANOGrav 2 256 305; 100 0.5; 0.7 30; 20 monthly 5
EPTA 5 128 100 0.7 30 monthly 5
EPTA - LEAP 1a 128 224 0.7 30 monthly 5

Arecibo 1 512 305 0.5 30 two-weekly 5

FASTb 1 400 500 0.36 20 two-weekly 5
ASKAPc 40 256 12 0.8 50 weekly 5

MeerKATd 80 512 12 0.7 30 weekly 5

a Under the LEAP initiative, five 100 m-class telescopes will be combined into an effective 224 m single telescope.
b Nan (2006); Jin et al. (2008)
c http://www.atnf.csiro.au/projects/askap/specs.html
d Jonas (2007)

in the sample cross covariance, we consider

Var(R(θi,j))

= Var
“

X

((rGW,i + rN,i)(rGW,j + rN,j)/Ns)
”

= σ2
G,iσ

2
G,j

(1 + ζ(θi,j)
2)

Ns

+
σ2

N,iσ
2
G,j + σ2

G,iσ
2
N,j

Ns

+
σ2

N,iσ
2
N,j

Ns

.

(A2)

After prewhitening this becomes (notice our notationσPW = ̺):

Var(RPW(θi,j))

= ̺4
G

(1 + ζ(θi,j)
2)

Ns

+ ̺2
G

(̺2
N,i + ̺2

N,j)

Ns

+
̺2
N,i̺

2
N,j

Ns

.

(A3)
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Figure 5. Sensitivity curves for the two main SKA pathfinders, Areciboand FAST. Gravitational waves are predicted to exist in the range10−15 − 10−14 .
See discussion in§5 and Table 7 for more information.

in which we have used̺2
G,i = ̺2

G,j = ̺2
G, which will be proved

shortly.
We derive the gravitational-wave power from equations (3)

and (2), for a GWB with spectral indexα = −2/3:

PGWB(f) = K(f/fref )
−13/3, (A4)

with K a constant proportional to the amplitude of the GWB and
fref = 1 yr−1.

Defining the corner frequency,fc, as the frequency at which
the gravitational wave power equals the noise power, enables us
to use equation (A4) to determine the noise power:PNoise =
K(fc/fref)

−13/3.
As illustrated by Jenet et al. (2005), the steep spectral index

of GWB-induced residuals implies that large gains in sensitivity
can be achieved through optimal prewhitening of the data. Assess-
ment of the variance of both the GWB and noise components of
the residuals after prewhitening, can most easily be done through
integration of the spectral powers, multiplied by the whitening fil-
ter, W (f), which is a type of Wiener filter, designed to minimize
the error in the estimation ofσG and is of the form:W (f) =
PGWB/(PGWB + PNoise)

2. Rescaling the weighting function thus
defined, we get:

W (f) = C

`

f/fref

´−13/3

`

1 + (f/fc)−13/3
´2

(A5)

with C a normalisation constant chosen for convenience to be:

C =

 

X

f

`

f/fref

´−26/3

`

1 + (f/fc)−13/3
´2

!−1

(A6)

The prewhitened variances then become:

̺2
G =

X

f

K(f/fref )
−13/3C

(f/fref)
−13/3

`

1 + (f/fc)−13/3
´2

= K (A7)

̺2
N =

X

f

K(fc/fref)
−13/3C

(f/fref )
−13/3

`

1 + (f/fc)−13/3
´2

= KC
X

f

`

fcf/f2
ref

´−13/3

`

1 + (f/fc)−13/3
´ (A8)

which justifies our choice forC and shows that, based on our
weighting scheme,̺2G,i = ̺2

G,j = K, as used earlier.
Since the spectra are effectively bandlimited tofc after

prewhitening, both the GWB and noise will have the same number
of degrees of freedom, namely:Ndof = 2Tobsfc − 1, whereTobs

is the length of the data span and therefore the inverse of thelow-
est frequency, implying there areTobsfc independent frequencies
measured belowfc. Since each frequency adds a real and imagi-
nary part, there are twice as many degrees of freedom as thereare
independent frequency samples; quadratic fitting removes asingle
degree of freedom from the total. Notice that

p

Ndof,iNdof,j is the
number of independent samples in the cross-covariance spectrum
and therefore replacesNs in equations (A1) and (A3).

The optimal least-squares estimator forK (and hence for the
amplitude of the GWB), based on a given setRPW(θi,j) with un-
equal errors, is (from equations (A1) and (A7)) :

K̃ =

P

RPW(θi,j)ζ(θi,j)/Var(RPW,i,j)
P

ζ(θi,j)2/Var(RPW,i,j)
(A9)
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The variance of this estimator is:

Var(K̃) =
1

P

ζ(θi,j)2/Var(RPW,i,j)
(A10)

We can now write the expected signal-to-noise of a given tim-
ing array as the square root of the sum over all pulsar pairs ofequa-
tion (A7) divided by the square root of equation (A10)

S =

v

u

u

t

Npsr−1
X

i=1

Npsr
X

j=i+1

̺4
Gζ2

p

Ndof,iNdof,j

̺4
G(1 + ζ2) + ̺2

G(̺2
N,i + ̺2

N,j) + ̺2
N,i̺

2
N,j

.

(A11)
Rewriting leads to:

S =

v

u

u

t

Npsr−1
X

i=1

Npsr
X

j=i+1

ζ2
p

Ndof,iNdof,j

1 + ζ2 + (̺′
i)

2 +
`

̺′
j

´2
+
`

̺′
i̺

′
j

´2
(A12)

where̺′
i = ̺N,i/̺G.
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