
CSIRO PUBLISHING

Publications of the Astronomical Society of Australia, 2004, 21, 302–309 www.publish.csiro.au/journals/pasa

PSRCHIVE and PSRFITS: An Open Approach to Radio Pulsar Data
Storage and Analysis

A. W. HotanA,B,D, W. van StratenC, and R. N. ManchesterB

A Swinburne Centre for Astrophysics & Supercomputing, Hawthorn VIC 3122, Australia
B Australia Telescope National Facility, Epping NSW 1710, Australia
C Netherlands Foundation for Research in Astronomy, 7990 AA Dwingeloo, The Netherlands
D E-mail: ahotan@astro.swin.edu.au

Received 2004 March 19, accepted 2004 April 19

Abstract: A new set of software applications and libraries for use in the archival and analysis of pulsar
astronomical data is introduced. Known collectively as the psrchive scheme, the code was developed in
parallel with a new data storage format called psrfits, which is based on the Flexible Image Transport System
(FITS). Both of these projects utilise a modular, object-oriented design philosophy. psrchive is an open source
development environment that incorporates an extensive range of c++ object classes and pre-built command
line and graphical utilities. These deal transparently and simultaneously with multiple data storage formats,
thereby enhancing data portability and facilitating the adoption of the psrfits file format. Here, data are stored
in a series of modular header–data units that provide flexibility and scope for future expansion. As it is based
on FITS, various standard libraries and applications may be used for data input, output, and visualisation.
Both psrchive and psrfits are made publicly available to the academic community in the hope that this will
promote their widespread use and acceptance.

Keywords: pulsars: general — methods: data analysis

1 Introduction

1.1 Collaborative Scientific Software Development

Modern, highly specialised experimental systems often
require extensive original software development. This is
true for all tasks, from direct hardware control through to
data reduction. Whilst individual research groups often
approach such software development from an isolated
perspective, the proliferation of digital hardware and wide-
area networking makes global cooperative software devel-
opment far more attractive, provided suitable common
ground exists. Both cooperative software development and
the adoption of standard packages provide a number of dis-
tinct advantages to the research community. For instance,
as less effort is wasted unnecessarily duplicating the work
of others, cooperative development can lead to more effi-
cient allocation of resources. In addition, supporting the
requirements of a larger user community promotes the
development of basic, general purpose routines that may
be used in a wider variety of situations. These influences
result in more modular and extensible software.

However, it should be noted that a greater level of
care and cooperation is required in collaborative soft-
ware development, especially the open source approach
advocated in this paper. For example, in contrast to most
commercial software, ‘black box’ modularity is undesir-
able in scientific analysis, especially when the applica-
tion of certain algorithms requires experienced judgment.
Open, well-documented code provides researchers with

an accurate understanding of third-party analytical tools.
Therefore, contributing developers must be willing to put
their code in the public domain, making it freely available
for non-commercial use by any other academic organisa-
tion. Although this facilitates the exchange of ideas, it also
raises the issue of potential loss of intellectual property,
which might discourage some authors.

It is also the case that collaborative development tends
to become decentralised, especially when multiple devel-
opers have the ability to commit fundamental changes
to the code. Effective communication between the core
developers becomes essential to the smooth running of
the project, necessitating greater attention to version con-
trol, maintenance of stable releases, and development of
extensive and concise documentation. Also, when a wider
user community is affected by modifications to the soft-
ware, exhaustive methods must be employed to ensure the
validity of changes and the integrity of the system as a
whole. Although each of these issues tend to increase the
workload of the collaborative developer, a much larger
body of users will benefit from the effort.

1.2 Software Development in the Pulsar Community

The global pulsar community is ideally suited to adopt a
collaborative approach to software development. It con-
sists of a relatively small number of locally centralised
groups that deal with different telescopes and instruments,
leading to several parallel, but incompatible, software

© Astronomical Society of Australia 2004 10.1071/AS04022 1323-3580/04/03302

psrchive and psrfits 303

development paths. As each path tends to be built around a
highly specific data storage format, cross examination of
data and algorithms is problematic. In addition, because
such software is generally designed for a limited pur-
pose, it is often difficult to extend its functionality without
introducing obfuscated code. This is especially true when
the program develops in an experimental fashion, as is
often the case with scientific applications. In order to
avoid future inflexibility, sufficient time and care must
be invested during the planning stage, calling on input
from both experienced software developers and pulsar
astronomers.

1.3 Radio Pulsar Data

Radio pulsars are broadband point sources of highly
polarised emission that exhibit rapid pulsations with a
characteristic period anywhere between one millisecond
and ten seconds. They are thought to be rotating neutron
stars with a strong dipolar magnetic field whose axis is
not aligned with the rotation axis of the star (Gold 1968).
Intense beams of emission originate at the magnetic poles,
which sweep across the sky with each rotation of the star
and produce the pulsed radio signal observed.

The characteristic signature of any radio pulsar is
its integrated polarimetric pulse profile, given by the
observed Stokes parameters averaged (folded) as a func-
tion of pulse longitude over several thousand individual
pulses (Helfand, Manchester, & Taylor 1975). Under the
influence of electrons in the interstellar medium (Taylor &
Cordes 1993), this pulsed signal is broadened by disper-
sive frequency smearing, which must be corrected in order
to infer the shape of the characteristic profile at the source.
This is normally done by dividing the observed bandwidth
into narrow frequency channels, which are appropriately
delayed relative to each other before summing the detected
flux densities in each channel. However, as the dispersion
measure may vary with time or may not be known with
sufficient accuracy at the time of the observation, it is often
necessary to store the individual pulse profiles observed
in each frequency channel.

In addition, it is possible to create a mean pulse profile
only if a suitably accurate model of the pulsar’s spin fre-
quency and phase is available. The apparent pulse period
is affected by a number of phenomena, including the spin-
down, timing noise and/or glitches intrinsic to the pulsar,
variations in the interstellar dispersion and Doppler effects
introduced by the relative motions of the Earth and pul-
sar. Inaccuracies in the model that describes these effects
introduce phase errors that accumulate with time and cause
the integrated profile to become smeared. Therefore, it is
often beneficial to store multiple, shorter integrations of
the mean pulse profile instead of a single, long integra-
tion. Furthermore, when a pulsar is bright enough, a great
deal of additional information about the characteristics
of the pulsar emission can be obtained by recording and
analysing each individual pulse. Therefore, a useful pul-
sar data format must be able to represent pulse profiles
observed over multiple epochs of arbitrary length.

In summary, pulsar observations generally consist of
a four-dimensional array of data indexed by polarisation
component, pulse phase, frequency, and epoch. Software
support for sensible groupings in other dimensions, such
as orbital phase, is also highly desirable. In addition,
data from a number of telescopes can be combined to
increase sensitivity and contribute to the eventual detec-
tion of new phenomena, such as the cosmic background of
stochastic gravitational radiation (e.g. Hellings & Downs
1983; Stinebring et al. 1990). Therefore, the data stor-
age format should have a flexible structure that provides
efficient access to key parameters, removed from any con-
siderations of individual instruments or signal processing
schemes.

1.4 Processing Radio Pulsar Data

Pulsars are observed for a variety of reasons, from study-
ing the nature of their structure and emission mechanism
(Dodson, McCulloch, & Lewis 2002) to utilising them as
highly stable clocks and astrophysical probes (Taylor &
Weisberg 1982). Consequently, the same pulsar observa-
tion can be used in a number of different contexts: one
focussing on the variation of polarisation with frequency,
another measuring general relativistic effects on pulse
times of arrival, etc. Nevertheless, our experience has
shown that there exist many common tasks associated with
pulsar data analysis that can be standardised within a
modern open source development environment.

As a demonstration of the types of operations per-
formed on pulsar data, consider the specific example of
the calculation of pulse arrival times. In order to increase
the signal-to-noise ratio (S/N) of each observation, data are
often integrated (‘scrunched’) by several factors in one or
more of the available dimensions. Each resultant profile
is then cross-correlated with a high S/N standard profile
known as a template, yielding an estimate of the longi-
tudinal offset between the two. This offset is added to
the reference epoch associated with a fiducial point in the
observed pulse profile, yielding an arrival time in the refer-
ence frame of the observatory, which is later converted into
a barycentric arrival time using a Solar System ephemeris.
This data reduction operation involves a number of typical
tasks, including loading the arrays of numbers that repre-
sent the folded profiles and computing sums, products,
rotations, weighted averages, and correlations of these
arrays, sometimes in the Fourier domain. Most of these
various operations must be performed in a manner consis-
tent with the observational parameters, for example: taking
into account dispersive delays, observation time stamps
and relative weightings of different frequency channels.At
each step, the software must also ensure that all parameters
are updated accordingly.

1.5 Scope and Design of PSRCHIVE and PSRFITS

It should be noted that the pulsar data under consideration
represents a point near the end of the typical chain of pul-
sar data reduction. The software presented in this paper is
not intended for the direct handling of radio data, such as

304 A. W. Hotan et al.

that recorded by baseband systems, nor for the purposes
of performing computationally expensive offline search-
ing, although some support for the storage of such data is
provided in psrfits. The code is also not designed to per-
form any phase-coherent dispersion removal or formation
of filter-bank data; these techniques are treated as sepa-
rate computational tasks. Code for such data reduction is
also available from the repository at the Swinburne Centre
for Astrophysics and Supercomputing under the umbrella
name of baseband dsp1, a general library for use in digital
signal processing.

The psrchive and psrfits schemes were designed from
the beginning to form an object-oriented framework into
which existing algorithms and data structures could be
transplanted. By introducing layers of abstraction between
the various levels of responsibility, the design remains
both flexible and extensible. For example, different tele-
scopes and instruments require the storage of different
types of information, including configuration parameters,
observatory and instrumental status information, and other
site-specific data. Because there is no way of knowing
exactly what future systems might include, both psrchive
and psrfits implement a generalised scheme for incorpo-
rating arbitrarily complex data extensions, as described in
Sections 2.3 and 3.2.

In addition, a basic framework of crucial parameters
common to all pulsar observations and a wide variety
of fundamental data reduction algorithms, such as those
described in Section 1.4, have been implemented. Each of
these basic data structures and reduction operations may
be used in the composition of more complex scientific
processing algorithms. By virtue of continued develop-
ment amongst the authors, the psrchive library includes
an extensive array of such high-level algorithms for use in
the calibration, visualisation, and analysis of pulsar data;
these can be used immediately on any of the supported file
formats.

psrchive and psrfits were developed in parallel and
are presented in the hope that they will promote increased
data portability. The psrfits file format also serves as an
example of how to incorporate other, pre-existing file for-
mats into the new scheme, as described in Section 2.4.
After two years of development, the code is now ready
for formal release to the wider pulsar community. In the
following Sections, we describe the implementation of
the new schemes and outline the specific advantages that
they offer.

2 Implementation Overview

2.1 Object-Oriented Programming

The modularity and extensibility required of our new
scheme suggested an object-oriented approach. Since
much of the existing Swinburne analysis code had already
been written in both the c and c++ programming lan-
guages, it seemed a natural step to progress in c++. The

1 http://astronomy.swin.edu.au/pulsar/software/
libraries/dsp

concepts of object classes and inheritance provided and
enforced by the syntax of this language offer a sound foun-
dation on which to develop. In particular, object-oriented
design has aided the realisation of simultaneous support
of multiple file formats. We are aware that a majority of
pulsar research groups prefer to write a more procedu-
ral style of code, using fortran or c. However, we feel
that the benefits of an object-oriented approach to data
processing significantly outweigh the potential learning
curve involved in becoming proficient with c++.

2.2 Basic Class Structure

The required functionality of psrchive is built around
a core framework of c++ object classes. The funda-
mental unit of all pulsar observations is the individual
pulse Profile, a one-dimensional array of floating point
numbers, indexed by pulse phase. The Integration is a
two-dimensional vector of Profile instances, indexed by
frequency and polarisation, as measured over a particular
epoch. In turn, the Archive is a one-dimensional vector
of Integration instances, indexed in one of a number of
possible ways (normally by time). Each of these classes
implement a wide range of basic data manipulation and
processing operations.

In the language of c++, we define the namespace
Pulsar, which contains the three ‘base classes’: Pulsar::
Archive, Pulsar::Integration, and Pulsar::Profile. In addi-
tion, there are other object classes in the Pulsar namespace
that deal with specific tasks related to pulsar data analysis.
For example, the Pulsar::Calibration class employs vari-
ous mathematical models of the instrumental response to
calibrate polarimetric observations (van Straten 2004).

2.3 Use of Data Abstraction

The three base classes implement a wide variety of basic
algorithms, known as methods, that are commonly used in
pulsar data analysis. However, they do not require knowl-
edge of any specific details related to system architecture,
enabling their use as templates upon which to base lower-
level development. These templates define the minimum
set of parameters, known as attributes, required to imple-
ment the data analysis methods, including observational
parameters such as the name of the source, centre fre-
quency, bandwidth, etc.At the level of the Pulsar::Archive
and Pulsar::Integration base classes, nothing is known
about how data are stored on permanent media or in
computer memory.

The necessary task of translating between the two
realms is performed by derived classes that inherit the
base classes. In order to inherit a base class, it is neces-
sary for the derived class to provide access to the required
attributes and to implement the methods used to read
and write the data stored. Therefore, for each specific file
format represented in the psrchive scheme, there corre-
sponds a derived class that inherits Pulsar::Archive. The
syntax for the data access and file input/output methods
is defined by the base class and enforced by the c++

psrchive and psrfits 305

load(filename:string):Archive
unload(filename:string)
get_source_name:string
get_dispersion_measure:double
get_centre_frequency:double
get_bandwidth::double
append(Archive)
clone:Archive
tscrunch
dedisperse

...

get_epoch:MJD
get_duration:double
get_folding_period:double
fscrunch

Archive::Extension

Pulsar::Profile
data:vector�float�
weight:float
...

rotate(phase:double)
snr:double
...

Integration::Extension

source_name:string
dispersion_measure:double
centre_frequency:double
bandwidth:double

...

load_header(filename:string)
load_data(integration:integer)
...

FITSArchive
epoch:MJD
duration:double
folding_period:double
...

BasicIntegration

right_ascension:double
declination:double
LST:double
...

FITSSubintExtension

FITSHdrExtension
version:string
creation_date:string
...

...

Pulsar::IntegrationPulsar::Archive

Figure 1 Class diagram of a portion of the psrchive library. The abstract base classes are shown above the dotted line. Below this line, the
FITSArchive class implements Pulsar::Archive attribute storage and access methods, as well as methods for loading and unloading data to
and from a psrfits file. The combined use of composition and inheritance enables complex structures and behaviours to be constructed using
modular components.

compiler, allowing all derived classes to be treated as
equal. Therefore, high-level code can be written in the lan-
guage of the base class definition without the need for con-
sidering the implementation details of the derived classes.
This abstraction, which is crucial to the flexibility of the
psrchive scheme, is demonstrated by the Unified Mod-
elling Language (UML) class diagram shown in Figure 1.

2.4 File Format Plug-In Libraries

In order to take full advantage of this level of data abstrac-
tion, the psrchive scheme makes use of dynamic shared
object libraries, or ‘plug-ins’. These libraries are compiled
using special options that allow them to be linked into a
program at run-time. Perhaps the best known example of
such a system is the plug-in scheme used to add functional-
ity to many web browsers. Within psrchive, the machine
code that defines a Pulsar::Archive-derived class is stored
inside a single plug-in file. The plug-in files corresponding
to different file formats are held in a central location that is
scanned on the first attempt to load pulsar data. The avail-
able plug-ins determine which file formats are understood
by providing a test routine that returns true if a file on disk
is of its own format. In this way, psrchive applications
can quickly scan a given data file, select the appropriate
derived class, and load the pulsar data. This ensures that,

as the number of supported file formats grows, the size and
complexity of any given application program remains the
same. We encourage all interested research groups that
currently maintain separate data formats to gain experi-
ence with the psrchive scheme by developing their own
file format plug-ins. By making the plug-in code publicly
available, research groups will be able to exchange data
already stored using different file formats.

In order to accommodate the stringent reliability
requirements of observatory online processing and mon-
itoring systems, we also offer the option of compiling all
psrchive applications using a static linkage scheme. This
makes the binary executables larger on disk but removes
the possibility of problems arising should a shared object
file be accidentally deleted or recompiled. Either option
can be selected by simply editing one line in the Makefile
scheme.

3 PSRFITS

3.1 A Standard Format for Pulsar Data Storage

One of the motivating factors behind the development
of the psrchive scheme was the alleviation of prob-
lems associated with highly specific and non-portable
data storage formats. This effort has highlighted several

306 A. W. Hotan et al.

Table 1. PSRFITS — A summary of the current definition

HDU title Description

Main header Observer, telescope, and receiver information,
source name and observation date and time

Processing history Date, program, and details of data acquisition
and each subsequent processing step

Digitiser statistics Digitiser mode and count statistics
Digitiser counts Digitiser mode and count rate distribution
Original bandpass Observed bandpass in each polarisation,

averaged over the observation
Coherent de-dispersion Parameters for coherent de-dispersion of

baseband data
Ephemeris history Pulsar parameters used to create or modify

profile data
Polyco history Elements of the polyco file used to predict

the apparent pulsar period
Flux calibration System temperature and injected noise

calibration data as a function of frequency
across the bandpass

Injected calibration Apparent polarisation of the injected noise
polarisation calibration signal as a function of frequency

Feed cross-coupling Parameters of feed cross-coupling as a
function of frequency

Integration data Pulse profiles or fast-sampled data as a
function of time, frequency, and polarisation

compelling reasons for the pulsar community to move
towards a more modular and standardised storage format.
For instance, the existence of a standard file format would
significantly decrease the amount of effort required to
integrate and test new instrumentation. Historically, file
formats have accreted features as they became desirable
or necessary. Given the wealth of past experience avail-
able, it seems a logical step to define a new format that
encompasses a wide range of features from the beginning
and is written in a modular way so as to enable rapid,
backwards-compatible upgrades. Indeed, one particular
standard storage format has already won wide acclaim
within the astronomical community; the Flexible Image
Transport System (FITS; Hanisch et al. 2001) has been
in widespread use for approximately three decades and
has evolved into a highly adaptable data storage scheme2.
The format has been placed under the administration of the
International Astronomical Union FITS Working Group3

and a wide array of software is available for FITS file
manipulation. The NASA High Energy Astrophysics Sci-
ence Archive Research Centre4 provides useful libraries
and applications for manipulation and interrogation of
FITS-based files. For example, the program fv has made
the process of testing and debugging the relevant psrchive
software much more straightforward.

In accordance with FITS standards, a psrfits file
consists of a primary header-data unit (HDU) followed by
a series of extension HDUs. The primary HDU contains

2 http://archive.stsci.edu/fits/fits_standard
3 http://www.cv.nrao.edu/fits/traffic/iaufwg/
iaufwg.html
4 http://heasarc.gsfc.nasa.gov/docs/heasarc/
fits.html

basic information such as telescope identification and
location, observation start time etc. Extension HDUs,
formatted as binary tables, contain specific information
related to the observation such as the pulsar ephemeris,
calibration data, and the pulsar data. Although psrfits is
primarily designed to store folded or single-pulse profile
data, it can also accommodate continuous time series data.

A useful feature of the standard FITS input /output rou-
tines is that new HDUs and header parameters may be
added transparently — if they are unknown to the reading
program, they are ignored. Furthermore, unused HDUs
need not be written, even though they are present in the
definition. This feature allows, for example, a user group to
add information particular to a certain instrument without
compromising use of the definition by other groups.

A novel feature of the psrfits definition is the inclusion
of HDUs containing ‘history’ information. For example,
the first line of the Processing History HDU contains
information about the data acquisition program and the
initial structure of the file. Subsequent lines record details
of modifications to the structure or data (for example,
partial or complete de-dispersion, or interference exci-
sion). A permanent record of the steps that have been
applied during data reduction has proven to be of great
value when later assessing the quality and validity of
observational data.

3.2 The PSRFITS Definition

The current version of the psrfits definition file is
available on the ATNF web pages5. Table 1 describes

5 http://www.atnf.csiro.au/research/pulsar/
psrfits

psrchive and psrfits 307

the header-data units included in the current definition
(ver. 1.18).

In addition to the Main and Processing History HDUs,
a number of optional HDUs have been defined for gen-
eral use with a variety of instrumentation. These enable
the storage of important status and diagnostic information
about the observation, and demonstrate the modularity
and extensibility of the psrfits file format. The phys-
ical parameters stored in the Ephemeris History HDU
are based on the pulsar timing program, tempo6. From
the ephemeris parameters are derived the polynomial
coefficients (polyco) used to predict the apparent pul-
sar period and phase at the epoch of the observation;
these coefficients are stored in the ‘Polyco History’ HDU.
As improved physical parameters become available, the
data may be reprocessed, leading to new rows in the
‘Ephemeris’ and ‘Polyco History’ tables. The calibration
and feed cross-coupling HDUs are designed to work with
the routines in the Pulsar::Calibration class. Owing to
the intrinsic modularity of FITS, these additional HDUs
are all optional; in fact, it is not even strictly necessary to
include any Integration data in a psrfits file. For exam-
ple, the polarimetric calibration modeling program creates
a file containing only the feed cross-coupling, injected
calibration polarisation, and flux calibration HDUs. This
modularity is similar to that made available through the use
of VOTable7 XML standards and it is likely that psrfits
could in future be incorporated into the International
Virtual Observatory system with a minimum of effort.

4 Working with the PSRCHIVE Scheme

4.1 The Standard Application Set

The psrchive scheme includes an extensive set of pre-
written application programs that can be used to manip-
ulate pulsar data in various ways. These include both
command-line tools and graphical user interfaces built
using Trolltech’s qt8, a c++ toolkit for multi-platform
GUI and application development. Table 2 presents a list
of applications included in the package at the time of
publication, with a brief description of each.

Readers may note that the modular philosophy at the
heart of psrchive extends all the way through to the user-
level applications. Each program tends to be small and
focused on a specific task, be it data compression, timing,
RFI mitigation, etc. This greatly simplifies development
and maintenance compared to having one monolithic
program with multiple purposes.

4.2 PSRCHIVE as a Development Environment

psrchive was designed to provide users with more than
just a set of pre-made applications. The classes, libraries,
and examples provided are intended to simplify the task
of building new processing tools. To a large extent, devel-
opers who build on the psrchive scheme do not have to

6 http://www.atnf.csiro.au/research/pulsar/tempo
7 http://www.ivoa.net
8 http://www.trolltech.com/products/qt/index.html

Table 2. Standard applications included with PSRCHIVE

Application Description

pav Archive data visualisation. Based on the pgplot
graphics subroutine library with a simple command
line interface

vap Archive header examination, allowing multiple user
selectable header parameters to be printed in ASCII
format to the terminal

pam Archive manipulation, compression, and processing
pat Pulse profile arrival time calculation, based on cross

correlation with a standard template profile
pas Standard profile phase alignment, for timing with

multiple standard template profiles
paz Radio frequency interference mitigation tool

including manual and automated channel ‘zapping’
and sub-integration removal

pac Archive polarimetric and flux calibration tool based
on a user-selectable set of advanced algorithms

pcm Polarimetric calibration modelling, creates
instrumental response transformations for use
with pac

psrgui Interactive point-and-click data visualisation with a
qt graphical interface

psradd Combination of multiple archives for formation of
high S/N profiles

rhythm A graphical interface for pulse arrival time fitting
based on tempo

directly manipulate the arrays of pulse profile amplitudes.
Instead, member functions of the various classes can be
called to perform basic operations like baseline removal
and phase rotation. This has the dual benefit of saving
labour both in the initial development phase and in the
debugging phase, as both the authors and other users have
already verified and tested the provided routines. In case
direct access to the profile amplitudes is required, we also
provide interface functions that return c-style arrays. In
our experience, the extra layer of abstraction provided by
the psrchive scheme can cut down the time between pro-
gram concept and full implementation to a matter of hours.
New applications can be built with only a few lines of code.
For example, to remove the system noise floor, compress
all frequency channels and output the processed archive:

include "Pulsar/Archive.h"

int main() {

Pulsar::Archive* arch = 0;

arch = Pulsar::Archive::load("filename");

arch -> remove_baseline();

arch -> fscrunch();

arch -> unload();

}

This simple program defines a pointer to a Pulsar::
Archive and calls the generic Pulsar::Archive::load rou-
tine, which takes a filename argument, applies a number
of tests to the file on disk (depending on the available
plug-ins) and decides whether or not it understands the
particular format. If so, it summons the appropriate derived
class to read the data from disk. Once the data have been

308 A. W. Hotan et al.

loaded, the Pulsar::Archive::remove_baseline function
is called.

void Pulsar::Archive::remove_baseline

(float phase, float width)

{

try {

if (phase == -1.0)

phase = find_min_phase (width);

for (unsigned isub = 0;

isub < get_nsubint(); isub++)

get_Integration(isub) ->

remove_baseline (phase, width);

}

catch (Error& error) {

throw error += "Pulsar::Archive::

remove_baseline";

}

}

The Pulsar::Archive::remove_baseline function takes
two arguments: the ‘phase’ and ‘width’ of the off-pulse
baseline. Both arguments are assigned default values in
the Archive.h header file. If ‘phase’ is left unspecified,
then the off-pulse baseline phase will be found using the
Pulsar::Archive::find_min_ phase method; if ‘width’ is
unspecified, then a default value will be used. The Pulsar::
Archive::remove_baseline method makes multiple calls to
the Pulsar::Integration::remove_baseline routine, which
performs the modification of amplitudes as follows:

void Pulsar::Integration::remove_baseline

(float phase, float width)

{

if (Pulsar::Integration::verbose)

cerr << "Pulsar::Integration::

remove_baseline entered" << endl;

try {

if (phase == -1.0)

phase = find_min_phase (width);

vector<float> phases;

dispersive_phases (this, phases);

for (unsigned ichan = 0;

ichan < get_nchan(); ichan++) {

float chanphase = phase +

phases[ichan];

for (unsigned ipol = 0;

ipol < get_npol(); ipol++)

*(profiles[ipol][ichan]) -=

profiles[ipol][ichan] ->

mean (chanphase, width);

}

}

catch (Error& error) {

throw error += "Integration::

remove_baseline";

}

}

This nested structure reduces the length of high-level
routines, allowing computations to be done at the level
of abstraction that best suits the task. Likewise, the
Pulsar::Integration::remove_baseline routine calls vari-
ous member functions of both the Pulsar::Integration
and Pulsar::Profile classes, computing the pulse phase
at which the minimum baseline level occurs in the total
intensity of the entire band. Adjustments for dispersive
delays in each channel are performed and the mean level
at this phase is individually removed from each Pul-
sar::Profile stored in the Pulsar::Integration. Developers
should also note the extensive use of ‘try/catch’blocks and
a specifically designed Error class that carries descrip-
tive information about any exceptions thrown back to the
calling procedure.

5 Resources and Availability

5.1 Obtaining and Compiling the Code

psrchive is freely available to the worldwide academic
community. It is held in a repository at Swinburne
University of Technology, Australia, and may be accessed
via the Concurrent Versions System9. As it is distributed
as source code, some experience with programming and
compilation is necessary. However, installation can be
done in a fairly simple step-by-step manner thanks to the
standard Makefile scheme included with the package. The
code is compatible with all versions of the GNU Compiler
Collection10 between 2.95 and 3.2.2 and is routinely tested
on both the Linux and Solaris operating systems. Every
effort will be made to ensure compatibility with future gcc
releases.

The psrchive scheme makes use of several external
libraries, including the Starlink Project11 slalib package.
It also requires at least one external Fast Fourier Transform
library and includes wrappers that provide compatibility
with either fftw 2.1.512 (available under the GNU Pub-
lic License) or Intel mkl13 (commercially available from
Intel). The pgplot14 graphics subroutine library is also an
integral part of the scheme.

Full documentation including instructions for down-
load and installation are available online by following the
menu options at the Swinburne Centre for Astrophysics
and Supercomputing web site15. Read-only access to the
repository is granted upon receipt by the developers of a
Secure Shell v2.0 public key that is used to allow remote
entry to the server. Write permissions to the repository
require a computing account with the Swinburne Centre
for Astrophysics and Supercomputing16.

9 http://www.cvshome.org/
10 http://gcc.gnu.org/
11 http://www.starlink.rl.ac.uk/
12 http://www.fftw.org
13 http://www.intel.com/software/products/mkl/
14 http://www.astro.caltech.edu/t̃jp/pgplot/
15 http://astronomy.swin.edu.au/pulsar/
16 Please direct all enquiries regarding access and installation or opera-
tion of the code to psrchive@astro.swin.edu.au

psrchive and psrfits 309

5.2 Online Documentation

psrchive reference documentation is maintained online.
In addition to the online descriptions, each command line
application has a -h option that displays a quick summary
of how to use the program. The library of c++ classes
is extensively documented using the doxygen17 system;
the source code contains tagged comments from which the
online manual is automatically generated. This manual is
intended as a reference to programmers as it primarily
describes the member functions available in each class
and the syntax of their arguments.

5.3 Support Services

Although we provide no official support for the software,
we are willing to assist with psrchive related problems as
time permits. We also provide a mechanism for reporting
serious bugs via an online interface known as yaq18.

6 Conclusions

The task of organising astronomical data into a logical
format lends itself surprisingly well to the object-oriented
programming paradigm. The combination of psrchive
and psrfits provides a powerful, ready-to-use archive and
reduction system for pulsar data, which can be rapidly
adapted to new instruments. We hope that the ready avail-
ability of an open source data reduction framework will
facilitate large scale collaborative projects, such as an
extended pulsar timing array (Foster & Backer 1990).

17 http://www.doxygen.org
18 http://astronomy.swin.edu.au/pulsar/

Therefore, we encourage both scientists and engineers
involved with pulsar data acquisition and reduction to
consider taking advantage of these packages.

Acknowledgments

We have benefited greatly from the advice and assistance
of many colleagues in developing the scheme described.
In particular, we thank Matthew Bailes and others in the
Swinburne Pulsar Group and Nina Wang at the Australia
Telescope National Facility. Thanks also to Ben Stappers,
Russell Edwards, and George Hobbs for constructive feed-
back during development. We would also like to thank
the referee for insightful comments which have led to
important improvements to this manuscript.

References

Dodson, R. G., McCulloch, P. M., & Lewis, D. R. 2002, ApJ, 564, 85
Foster, R. S., & Backer, D. C. 1990, ApJ, 361, 300
Gold, T. 1968, Natur, 218, 731
Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D.,

Schlesinger, B. M., Teuben, P. J., Thompson, R. W., &
Warnock III, A. 2001, A&A, 376, 359

Helfand, D. J., Manchester, R. N., & Taylor, J. H. 1975,ApJ, 198, 661
Hellings, R. W., & Downs, G. S. 1983, ApJ, 265, L39
van Straten, W. 2004, ApJS, in press
Stinebring, D. R., Ryba, M. F., Taylor, J. H., & Romani, R. W. 1990,

PhRvL, 65, 285
Taylor, J. H., & Cordes, J. M. 1993, ApJ, 411, 674
Taylor, J. H., & Weisberg, J. M. 1982, ApJ, 253, 908

