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1 INTRODUCTION

in original form

ABSTRACT

We demonstrate that the sensitivity of high-precision pulsar timing experiments
will be ultimately limited by the broadband intensity modulation that is intrinsic
to the pulsar’s stochastic radio signal. That is, as the peak flux of the pulsar ap-
proaches that of the system equivalent flux density, neither greater antenna gain nor
increased instrumental bandwidth will improve timing precision. These conclusions
proceed from an analysis of the covariance matrix used to characterise residual pulse
profile fluctuations following the template matching procedure for arrival time estima-
tion. We perform such an analysis on 25 hours of high-precision timing observations
of the closest and brightest millisecond pulsar, PSR J0437—4715. In these data, the
standard deviation of the post-fit arrival time residuals is approximately four times
greater than that predicted by considering the system equivalent flux density, mean
pulsar flux and the effective width of the pulsed emission. We develop a technique
based on principal component analysis to mitigate the effects of shape variations on
arrival time estimation and demonstrate its validity using a number of illustrative
simulations. When applied to our observations, the method reduces arrival time resid-
ual noise by approximately 20%. We conclude that, owing primarily to the intrinsic
variability of the radio emission from PSR J0437—4715 at 20 cm, timing precision in
this observing band better than 30 - 40 ns in one hour is highly unlikely, regardless
of future improvements in antenna gain or instrumental bandwidth. We describe the
intrinsic variability of the pulsar signal as stochastic wideband impulse modulated
self-noise (SWIMS) and argue that SWIMS will likely limit the timing precision of
every millisecond pulsar currently observed by Pulsar Timing Array projects as larger
and more sensitive antennas are built in the coming decades.
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for several applications, such as testing the general the-

ory of relativity (e.g./Taylor & Weisberém; Kramer et al]

The most fundamental property of radio pulsars is their
periodic series of radio pulses that enable their discovery
and a myriad of timing applications. A sub-class of pul-
sars, known as the millisecond and recycled pulsars, have
spin periods between 1.4 and a few tens of ms and typical
spin-down rates of P ~ 1072, Their short periods and low
braking torques make them especially good clocks, and these
pulsars exhibit the highest timing precision

). For most of these pulsars a simple model of the pulsar
spin-down, astrometric and orbital parameters can be deter-
mined, enabling the mean time-of-arrival (ToA) of pulses to
be predicted accurately and precisely. These can be used
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), detecting irregularities in terestrial time standards

i [1996; [Rodinl 2008; Hobbs et all 2010) and

to attempt the first direct detection of a stochastic back-
ground of gravitational waves (see, e.g.

Hellings & Downs
L(Bj Foster & Backeﬂ LM Demoresﬂ um Yardley et al J
M, van Haasteren et a “M) The wealth of information
already derived from the precision timing of millisecond ra-
dio pulsars has led many authors to predict the kind of pul-
sar timing science possible with the Square Kilometre Array
(SKA) by linearly extrapolating current telescope sensitivi-
ties to that of the SKA.

The closest and brightest millisecond pulsar known,

PSR J0437—4715 (Johnston et all [1993) has been studied

by numerous authors with steadily improving instrumen-
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tation. [Sandhu et al! (1997) observed the pulsar using an

autocorrelation spectrometer with 128 MHz of bandwidth,
and could model pulse arrival times over two years with a
post-fit residual (the difference between observed and pre-
dicted arrival times after fitting for the pulsar spin, astro-
metric and binary parameters, etc.; ) standard
deviation of 500 ns. Noting that the formal uncertainty of
arrival time estimates was typically around 50ns, the au-
thors concluded that their results were limited by polari-
metric calibration errors. (IM) first proposed the
use of the Stokes invariant interval to mitigate the prob-
lems caused by polarisation calibration. This was later im-
plemented by [van Straten et all dZQQ]J), who used a combi-
nation of 16 MHz and 20 MHz baseband recording systems,
typical integrations of 1 hour duration, and coherent dedis-
persion to obtain a root-mean-square (rms) timing resid-
ual of 130ns over 3.4yr. Using new and improved calibra-
tion methods developed by van Sgraﬁeﬂ (Im, M) and
a new baseband recording and processing system (CPSR2;
Bailes [2003; [Hotan 2006) with 128 MHz of bandwidth,
Verbiest et all (2008) achieved 199 ns over 10 years.

None of the above studies achieve the timing precision
predicted by the formal uncertainty in arrival time esti-
mates. When observing PSR J0437—4715 in the 20 cm band
at the Parkes 64m observatory, the expected rms timing
residual from a 256 MHz band with 21 K system temper-
ature is about 10 and 80ns in one hour and one minute
of integration, respectively. These uncertainties are derived
from the template-matching method used for pulsar timing,
in which each observation of the average pulse proﬁleﬂ o(t)
is modelled as a scaled (A) and offset (B) template S(t),
rotated by some phase shift ¢, with additional white noise

N(t) GMM [1992; IBailes M)
O(t) = AS(t — ¢) + B+ N(t). 1)

It is generally assumed that the summation of many hun-
dreds or thousands of pulses leads to a stable pulse pro-
file that is characteristic of the pulsar (Helfand et all[1975).
Consideration of only additional white noise, N(t), in the
above equation is equivalent to assuming that the sys-
tem equivalent flux density is the only significant source
of noise. However for bright sources and/or high gain an-
tenna, this assumption is no longer tenable in at least two
circumstances. Firstly, when the flux density of the pulsar
approaches the system equivalent flux density (SEFD) of
the receiver additional noise proportional to the pulsar’s

flux density becomes significant (e.g. [Kulkarni [1989; IGwinn
2001, 12004, 2006; lvan_Stratenl 2009; Gwinn & Johnson 2011
Gwinn et al] M) Secondly, it is known that each single
pulse can have very different morphology and can occur
at different pulse phase @m&&&r@fﬂm7 [Helfand et all
M; Jenet et al] M) Even after integrating over many
pulse periods, this subpulse modulatior] can introduce de-
tectable fluctuations in the average profile shape and thereby
contribute additional noise to timing data. We discuss the

1 throughout the paper we refer to the observed averaged phase
resolved light curve of the pulsar as the pulse profile or pulse
shape

2 The term “phase jitter” (e.g. WM) is some-
times used to describe this phenomenon but we find it somewhat
misleading as it is not only the pulse phase that varies.

noise balance in more detail in §2] and argue that these two
contributions should be considered together as they are re-
lated and are described by the same statistical model.

We note that the presence and importance of pulse
profile variability have been discussed in many different
contexts. Some “classical” pulsars have been observed to
change between two or more stable profiles — a phenomenon
known as mode changing — on time-scales of minutes to
hours (e.g. Backgﬂm; Bartel et all M) On longer time
scales, pulsars have been discovered whose emission com-
pletely switches off for many days, weeks or even months
e.g. |Durdin et al] M; Kramer et al] M) Recently,
m (M) have shown that the pulse profiles for
many pulsars switch between two unique states on time-
scales of months to years. Karastergiou et al! (2011) recently
detected a transient component in PSR J0738—4042, vary-
ing on time-scale of years or decades.

The connection between the pulse shape changes and
timing noise was made soon after the discovery of timing
noise in the pulsar observations by [Boynton et all (1972).
They studied optical timing observations of the Crab pulsar
and discovered a noise component in the timing residuals
which was well modelled as a random walk in the pulsar
spin frequency. The authors also considered a random walk
in the pulse phase and spin frequency derivative, but found
no evidence of such noise in their data. This analysis was
extended in a series of papers (m m@ﬂ) The au-
thor presented an analysis method suitable for studies of
data with inherent timing noise. This improved methodol-
ogy led to the conclusion that noise in the Crab pulsar tim-
ing is dominated by a random walk in the spin frequency
but a random walk in pulsar phase might also be present. In
the meantime, Manchester & Taylod (1974) described tim-
ing noise for two slow pulsars from radio observations. A
few years later, another series of papers (Helfand et all|1980;
MM,M@M) presented statistics of
timing noise for 37 bright pulsars and concluded that it is a
ubiquitous phenomenon. These authors presented a careful
analytical description of random walks in pulsar phase, spin
frequency and its derivative and the uncertainties in the es-
timation of their parameters. The last paper in the series
pointed out that the random walk in the pulsar phase can
be due to the random pulse shape changes but concluded
that it was unlikely to be the dominant source of timing
noise in the available data. A different dataset was analysed
in a similar manner by [Cordes & Downs (1985) who stated
that either excessive jitter or pulse shape changes are im-
portant for a significant fraction of their sample. They also
pointed out that the pulse shape changes are likely to be
universal but their importance varies from object to object.
Later, [Cordes (IE) detected pulse shape variability in 11
out of 14 studied objects. These variations were consistent
with being caused by summation of a finite number of pulses.
A year later [Kaspi et all (1994) studied two millisecond ra-
dio pulsars and discovered timing noise in one of them. The
general continuity of properties between classical and mil-
lisecond pulsars suggests that pulse shape changes may be
common in millisecond pulsars as well.

The profile variability of millisecond pulsars (MSPs)
has been studied in relatively few cases. The single pulses
from PSR J1939+2134 show no subpulse structure over
selected ranges of pulse longitude (Im M) but
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emit giant pulses as much as 300 times brighter than the
average pulse, that are narrower and systematically de-
layed with respect to the main and interpulse components
(Cognard et all 1996; [Kinkhabwala & Thorsett 2000). Sev-
eral other groups have argued that MSPs exhibit pro-
file shape changes. Some are associated with different
viewing geometries or with gravitational spin-orbit cou-
pling; e.g. PSR B1913+16 (Weisberg et all [1989; |[Kramer
1998) and PSR B1534+12 (Arzoumanian [1993; [Stairs et all
2000). Backer & Sallmen| (1997) claimed erratic emission
modes from PSR B1821—24 but at only one observing
frequency. In another work, [Kramer et all (1999) studied
PSRs J10224-1001 and J1730—2304. In both cases, they de-
tected profile variations over time-scales of the order of 10
to 15 minutes; however the data quality for the latter did
not allow a rigourous statistical analysis. On the other hand,
Hotan et all (2004a) detected no significant variations in the
pulse profile of PSR J1022+1001 and demonstrated that the
reported profile shape variations could be explained by po-
larisation calibration errors.

Small profile changes in PSR J0437—4715 were de-
scribed by [Vivekanand et all (1998) using observations per-
formed at a very low frequency with only a single polarisa-
tion. This result was contested by [Sandhu et all (1997), who
argued that calibration errors were the origin. [Vivekanand
(2001) later argued that the variations are intrinsic to the
pulsar and correlated with spiky emission in the varying
component. Variations in the central region of the profile
were also reported by [Navarro et all (1997) with 24 minute
integrations at 428 MHz but they were not investigated in
detail. [Liu et al! (2011) developed a sharpness statistic but
found it insesitive to profile changes in PSR J0437—4715.

As described in more detail in §2] this work focuses on
the stochastic fluctuations in total intensity that arise from
the subpulse structure observed in single pulses and their ef-
fect on the timing precision attainable for PSR J0437—4715.
In 3] our observations are described along with the applied
data processing followed by results of timing our observa-
tions. In §4] we describe a statistical method useful for de-
tecting profile shape variations, then apply it to simulated
data as a demonstration of how it can be used to correct
ToA residuals. The results of the statistical analysis are pre-
sented in §51 We summarise our findings and discuss their
consequences in §6 which also contains a discussion of other
possible problems that prevent us from reaching the theo-
retical timing accuracy. Finally we draw our conclusions in

i

2 STOCHASTIC WIDEBAND IMPULSE
MODULATED SELF-NOISE

The noise N(t) in equation [I is normally assumed to be
dominated by the white radiometer noise. In practice, for
bright sources and/or high gain antennas, two additional ef-
fects may contribute significantly. In this section we discuss
the noise balance for pulsars and demonstrate that the dif-
ferent contributions are well described by a single statistical
model.

Firstly, the noise balance has to include the source itself
when the flux density of the pulsar approaches the SEFD.
This noise is intrinsic to the source and is accordingly called

“self-noise”. In the case of PSR J0437—4715, the mean flux
at the peak of the pulse profile is of the order of 5 Jy; this
contributes only ~ 2% to the standard deviation of the to-
tal intensity, which is dominated by the SEFD ~ 27 Jy of
the 20 cm multibeam receiver (Manchester et all2001) com-
monly used for pulsar timing observations at Parkes. Any
source that can be described as noise (e.g. thermal emission)
will contribute to the variance of the observed total inten-
sity of the source. When the signal-to-noise ratio (S/N) is
low, this contribution is negligible. We note that through-
out the paper we use S/N values calculated using the noise
measured in the off-pulse baseline.

Secondly, dramatic subpulse amplitude modulation is
a ubiquitous feature of radio pulsar emission (Rickettl[1975)
that spans orders of magnitude in intensity and duration
and is a broadband phenomenon (e.g. [Staelin & Reifenstein
1968; [Taylor et, all 1975; Manchester et all  [1975;
Hankins et all [1993; |[Hankins & Eilek [2007; [Wang et al.
2007). The subpulse emission from PSR J0437—4715 is
well studied; \Jenet et all (1998) observe an exponential
distribution of peak subpulse intensities with a mean flux
density of 16.6 Jy, which is comparable to the SEFD.
More importantly, the mean subpulse width of 65 us
(Jenet et all [1998) is about an order of magnitude larger
than the interval required to sample the mean pulse profile
of PSR J0437—4715. Consequently, subpulse intensity
fluctuations introduce detectable variations in the average
pulse profile. Given the stochastic nature of subpulse
structure, these fluctuations in mean pulse profile shape
can be expected to introduce significant additional noise in
derived arrival time estimates.

In one minute, PSR J0437—4715 turns ~ 10* times and
emits at least ~ 2 x 10 subpulses (Jenet et al![1998). After
integrating over such a large number of emission events, it is
no longer practical to consider the impact of an individual
subpulse. Rather, it becomes necessary to describe the ef-
fects of subpulse modulation in purely statistical terms using
the fourth moments of the electric field (Ricket|1975). From
this perspective, the subpulse modulation phenomenon is
a noise process that contributes to the autocorrelation of
the total intensity (Rickett [1975). For a given source flux
density, amplitude modulation increases the variance of the
total intensity and, depending on the time-scale of the mod-
ulations and the sampling interval of the instrument, intro-
duces power at non-zero delays in the autocorrelation of the
total intensity.

Measured statistical distributions of subpulse intensities
vary between sources and as a function of pulse longitude
(e.g. power law, log normal, etc.; for an excellent review, see
Cairns 12004). Regardless of the original distribution, after
a large number of pulses have been integrated, the central
limit theorem applies and profile shape variations are well
described by a multivariate normal distribution. The covari-
ance matrix that quantifies this distribution contains phase-
resolved information about the mean autocorrelation of the
total intensity.

To summarise, depending on the pulsar’s flux density,
its emission properties and the used instrument, we can dis-
tinguish three noise regimes:

(i) First regime: The pulsar’s flux density is much smaller
than the SEFD of the instrument. This is the classic regime,
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in which the noise is temporally uncorrelated between the
phase bins and homoscedastic (i.e., the variance of noise is
the same in each phase bin). In this regime the covariance
matrix of the pulse profiles is well approximated by a diag-
onal matrix with all the elements on the diagonal equal to
the variance of SEFD.

(ii) Second regime: The pulsar’s flux density approaches
or exceeds the SEFD of the received used. In this regime the
self-noise cannot be neglected. The noise is still temporally
uncorrelated between the phase bins, but it is heteroscedas-
tic; that is the variance of the noise is different in each bin
and proportional to the sum of squares of the pulsar’s flux
density and the SEFD. The covariance matrix of the data is
still diagonal, but the non-zero elements are no longer equal.
In this regime, the on-pulse noise is no longer measured by
the off-pulse noise and using the latter to calculate the S/N
can lead to overestimating the achievable timing precision.

(iii) Third regime: The pulsar is heavily amplitude modu-
lated with the modulated flux approaching or exceeding the
SEFD of the instrument. Even though the self-noise con-
tribution may be negligible, the modulated subpulses can
approach the SEFD of the receiver, thus contributing signifi-
cant ‘noise’ to the averaged pulse profile. If the sampling rate
is high enough to resolve the subpulse structure, the noise
in different phase bins will be heteroscedastic and tempo-
rally correlated. The off-diagonal elements of the covariance
matrix will be non-zero in this regime. If the subpulses are
not resolved, amplitude modulation may still be evident in
the variation of the modulation index as a function of pulse
phase. The broadband nature of the impulses will also lead
to spectral correlation of the noise, which can be detected by
measuring the covariance of intensity fluctuations in differ-
ent frequency channels. Therefore, when analysing only the
covariance matrix SWIMS might be confused with self-noise.

In this paper, we investigate the effects of the third
regime, which we call stochastic wideband impulse modu-
lated self-noise (SWIMS), on pulse arrival time estimation.
This pulsar-intrinsic noise has also been called pulse-phase
jitter (or jitter noise), “intermittent emission” (Gwinn et al.
2011)) or simply self-noise. We will demonstrate that the
timing precision of PSR J0437—4715 is currently limited by
SWIMS and that its effect on the mean pulse profile is read-
ily detectable.

As a function of integration length T', the covariance
matrix scales as T~ ; that is, the effects of SWIMS are re-
duced by integration, regardless of the dominating source
of noise. The fact that the covariance matrix scales as T~ *
allows us to study the statistics of single pulses with longer
integrations. If any pulse-to-pulse correlation were present
in data, such as arising from drifting subpulses, nulling,
mode changing, scattering or polarisation calibration errors,
the scaling of the covariance matrix with integration length
would deviate from the above proportionality. We note that
the relative contribution of source-intrinsic noise to the co-
variance matrix will vary as the flux density of the pulsar
varies, primarily owing to interstellar scintillation. However,
after averaging over many scintillation time scales, the rela-
tive contribution of SWIMS compared to the SEFD is con-
stant (Kulkarni [1989); therefore, the relative importance of
SWIMS is independent of integration length. We note that
in the first or second regime, noise can be reduced by in-

creasing the bandwidth. However, because the intensity fluc-
tuations are typically correlated over wide bandwidths, the
noise due to subpulse modulation is not reduced by increas-
ing the bandwidth and only longer integration times and
active mitigation can improve timing precision in the third
regime.

Gwinn et all (2011) recently performed a detailed anal-
ysis of impulse-modulated self-noise in the context of in-
terstellar scintillation observations and concluded that self-
noise may limit pulsar timing precision. In this paper, we
explore the impact of both temporal and spectral correla-
tions of intensity fluctuations on pulsar timing and consider
active mitigation of SWIMS.

3 OBSERVATIONS AND DATA PROCESSING

Observations of PSR J0437—4715 were recorded during one
week of February 2010 using the Parkes 64m radio tele-
scope and the central beam of the 20cm multibeam re-
ceiver (Staveley-Smith et all[1996). The third generation of
the Pulsar Digital Filterbank (PDFB3) digitised the volt-
age data from two orthogonally polarised 256 MHz bands
and formed 1024 frequency channels using a polyphase fil-
terbank. After full polarisation detection (following the def-
initions described by [van Straten et alll2010), the data were
folded at the topocentric period of the pulsar into 1024 phase
bins. The mean polarisation profile was output every minute
and a total of 25 hours of data were recorded. The multi-
beam receiver is equipped with a noise diode that is coupled
to the receptors and driven with a square wave to inject a
pulsed polarised reference signal into the feed horn. This sig-
nal was recorded for three minutes before and after every 64
minute observation of the pulsar. These data are archived in,
and can be obtained through, the Australia Telescope On-
line Archive and CSIRO Data Access Portaﬁ (Hobbs et al.
2011)).

The data are stored in the PSRFITS format and all
processing was done with the PSRCHIVE data processing
software suite (Hotan et all|2004b). First we ensured that a
recent model for the pulsar spin, astrometric and orbital pa-
rameters (Verbiest et all2008) was used throughout for our
data processing. To remove narrow band radio frequency in-
terference (RFI), median filtering was applied by comparing
the total flux in each frequency channel with that of its 49
neighbouring channels. To avoid distortions at the edge of
the observing band, we rejected five per cent of the frequency
channels on each side of the band. A search for impulsive RFI
was performed with the “lawn mower” methocﬂ. Pulsar ob-
servations were calibrated for polarisation as in lvan Straten
(2004). The flux density was calibrated by observing the Hy-
dra A radio galaxy which is assumed to have a flux of 43.1 Jy
at 1400 MHz and a spectral index of —0.91.

A high S/N template for each frequency channel was
created by integrating the observations obtained during the
first day of data and then used to identify and remove data
affected by broadband impulsive RFI as follows. First, for
each frequency channel, the best-fit scale, baseline offset and

3 http://datanet.csiro.au/dap/
4 http://psrchive.sourceforge.net/manuals/paz
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Figure 1. The high S/N (15, 000) template for PSR J0437—4715,
created from 5.5 hours of observations. The solid black line rep-
resents the total intensity.

phase shift (Taylon [1992) between the profile and template
were applied to compute the difference between the tem-
plate and the data. Second, the rms flux of this difference
was computed after integrating over frequency at the dis-
persion measure (DM) value of the pulsar and at zero DM.
RFI will induce a high rms flux at zero DM while, at the
pulsar’s DM, impulsive interference will be smeared across
multiple phase bins. Hence, if the difference has an rms flux
value at zero DM that is higher than at the pulsar’s DM the
profile is potentially polluted by RFI. A few hundred profiles
were examined by eye. The rms ratio at both DMs for the
RFI polluted difference profiles allowed the determination
of a threshold ratio above which the remaining profiles were
automatically tagged as being affected by RFI and rejected
from further analysis. After all the RFI removal stages we
were left with 1145 one minute integrations that are consid-
ered RFI free. From the 5.5 hours of observations taken dur-
ing the first day of observing, we created a final, frequency
integrated total intensity template shown in Figure [I] with
a S/N of 15,000.

The ToA of each observation not affected by RFI in the
remaining six days was determined by cross-correlation with
the template (Taylorn [1992). Timing residuals were formed
from these ToAs and the pulsar model using the TEMPO2
software package (Hobbs et all[2006). The ToA residuals for
these data are shown in Figure 2l as a function of ToA num-
ber. Note that they are not evenly spaced throughout each
day. The mean ToA estimation error is only 72 ns and the
mean S/N is 770. The weighted rms of the timing residu-
als however is ¢ = 372 ns and the reduced chi squared of
the fit, x?/dof, where dof denotes the number of degrees
of freedom, is 33.8. The unweighted rms timing residual is
similar: 389 ns.

The high x?/dof value could be caused by underesti-
mation of the ToA uncertainty or because the pulsar model
does not accurately predict the observed ToAs. To verify
the estimated arrival time uncertainties, we carried out a
Monte-Carlo simulation in which each observed profile is
replaced by an exact copy of the template with a suitable
amount of white noise added to yield a S/N equal to that of
each observation when averaged over many realisations. The
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Figure 3. Comparison of achieved timing precision with the the-
oretically attainable precision as a function of integration time.
The line in the dashed region plots the theoretical rms, equal to
the mean rms obtained from 10° different realisations of white,
homoscedastic noise. This values agree with expectations based
on the width of the mean pulse profile and the S/N. In 95% of
the simulations, the rms falls within the dashed region. The confi-
dence interval is much broader at long integration lengths because
a fixed number of initial pulse profiles is used; hence, at large t,
fewer independent instances remain, thus biasing the estimate.

Xz/dof of the timing residuals is always very close to unity
in these simulations, implying that the ToA uncertainties
are calculated correctly under the assumption of equation [I1

In the above simulation, the white noise added to each
simulated pulse profile is statistically independent of the
noise in every other profile; in this case, as profiles of roughly
equal S/N are integrated together, the rms of arrival times
derived from the integrated totals will be roughly proportial
to T71/27 where T is the integration length. Consequently,
the statistical independence of errors in arrival time esti-
mates is commonly verified using a plot of residual rms as a
function of integration length, as shown in Figure [3l Here,
the thick line indicates the mean theoretical expectation
based on 10° simulations of 64 ToAs derived from template
with white noise added. The shaded region shows the 95%
confidence levels derived from the same simulations. The
deviation of solid lines from 1/+/¢ behaviour is solely due
to the small number of points at longer integrations, e.g.
only 2 points are available at 32 minute integration length.
The fact that the observed rms follows the expected be-
haviour suggests that no pulse-to-pulse correlations or anti-
correlations are important in our dataset. We note that the
precision measured is far worse than the theoretical expec-
tation. For example, with 32 minute integrations, we expect
an rms timing residual of ~ 13 ns but we observe a typical
value of 52 ns. This factor of ~ 4 worse than the theoretical
prediction implies that, if this problem was understood and
fully corrected, then the same observing precision could be
achieved with integrations 16 times shorter than currently
required.

The above simulation does not include any self-noise
or subpulse modulation; therefore, the predictions in Fig-
ure [3] are those expected from the radiometer equation (e.g.
Dewey et all [1985). However, in the real data the variance
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J0437-4715 (Wrms =

0.372 us) post—fit chisq=33.81

Postfit Residual (us)

TOA number

Figure 2. Timing residuals for 6 days of data timed against the standard from Figure[ll The mean ToA estimation error is of the order
of 72 ns, whereas the weighted rms of the residuals o7, 4 is 372 ns. The fit has X/dof2 of 33.8. For clarity we have plotted the residuals
as a function of ToA number. The vertical lines are plotted between observations taken on different days.

of the noise in the off-pulse region understimates the vari-
ance and completely neglects the temporal correlation of
the noise in the on-pulse region; that is, the actual noise is
heteroscedastic and correlated. Increasing the gain of the
antenna will amplify SWIMS and while the S/N calcu-
lated using only the off-pulse noise will increase the rms
timing residual will not decrease. Therefore, longer inte-
grations will be necessary to achieve a lower rms timing
residual. More importantly, the SWIMS in the total in-
tensity from subpulse modulation is spectrally correlated.
Figure Ml shows a greyscale image of a single pulse from
PSR J0437—4715 as function of pulse phase and radio fre-
quency taken with the ATNF Parkes Swinburne Recorder
(APSR; lvan Straten & Bailes 2011). The emission clearly
extends across the entire observed band, producing a high
degree of spectral correlation of subpulse intensity fluctua-
tions. To see if ToAs from independent bands are correlated
we divided our template and each one minute observation
into two independent frequency channels and determined
the timing residuals for each channel separately. Figure
shows the timing residuals plotted against each other for
one hour of data processed in this way and shows that the
ToAs are highly correlated between the two channels (the
average Pearson product moment correlation coefficient be-
tween the two sub-bands is 0.91). If the subpulse modulation
contribution to SWIMS had no impact on the timing resid-
ual, no such correlation would be present. In addition, the
rms timing residual of each of the two sub-bands, as well
as the combined rms timing residual is similar to the value
obtained for the combined data. Under the assumption that
the broadband subpulse properties of PSR J0437—4715 are
responsible for the scatter in the timing residuals, increas-
ing the observing bandwidth will not reduce the SWIMS
component due to subpulse modulation.

The heteroscedastic and both temporally and spec-
trally correlated properties of SWIMS can lead to signifi-
cant statistical bias in arrival time estimates derived from
sources with amplified flux densities comparable to the sys-
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Figure 4. Greyscale image of a single pulse from

PSR J0437—4715 as a function of pulse phase and frequency
taken with the APSR instrument. We stress that (a) the sub-
pulse persists across the whole available band, and (b) that each
subpulse is very different from the average profile.

tem equivalent flux density. The following sections report on
an investigation of one possible method of correcting these
biases.

4 METHOD

As explained in the previous section, failure to account for
the statistical characteristics of SWIMS leads to measur-
ment bias and underestimation of arrival time uncertainty.
In this section, we explore the use of principal component
analysis (PCA) to correct the statistical bias through a series
of simplified simulations. These simulations do not model
the large number of impulsive intensity fluctuations; rather,
the simulations demonstrate that the PCA model corrects
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Figure 5. Timing residuals derived from two independent sub-
bands every 60 seconds plotted against each other to demonstrate
their remarkable degree of correlation.

only the arrival time bias due to profile shape variations
and that no other sources of phase noise are incorrectly mit-
igated. An overview of PCA is given in [Hyvarinen et al.
(2001). We extend the analysis introduced by [Demorest
(2007) and then present a number of illustrative simulations
that demonstrate the validity of our method and its im-
plementation. A very similar methodology has been under
development by Cordes and his collaborators since the 1990s
(private communication, |Cordes [1993).

The PCA method provides a rigourous and unbiased
statistical method for analysing temporally correlated vari-
ations in total intensity. For each one-minute observation of
PSR J0437—4715 ~ 15 x 10° samples are integrated in each
of the Npi, pulse phase bins; therefore, by the central limit
theorem, the fluctuations in total intensity are well described
by a multivariate normal distribution. If the distribution of
these fluctuations was strongly non-normal, better perfor-
mance might be achieved by a similar method using indepen-
dent component analysis (Hyvarinen et all [2001). We note
that the number of pulses integrated in each minute is ap-
proximately an order of magnitude larger than the number
of pulses considered in previous studies of profile stability
(Helfand et all [1975; [Rathnasree & Rankin [1995).

Assume that IV such observations have been made of a
given pulsar. We describe the profile for the i’th observation
as a column vectorﬁ p’. The j’th element, pé-, is the ampli-
tude of the j’th bin in the ¢’th profile. The covariance matrix
is typically computed after subtracting the mean of all ob-
servations from each observation. Here, we assume that the
template, s , is a good estimate of the mean profile and, be-
fore subtraction, each observation is first adjusted to match
the template using the best-fit phase shift, scale and offset
as derived from the template-matching procedure used for

5 Our notation is defined as follows: All matrices are denoted by
bold sans serif font (e.g. M). All vectors are denoted by bold italic
font (e.g. v). An element of a matrix is denoted by M;;. An i’th
column of a matrix is denoted by M;. An ¢’th element of a vector
is denoted by v;. If there are multiple vectors of a given type,
we denote the i'th vector by superscripting, e.g. v*. The indices
¢ and j always are in range [1, N] and [1, Nyp;p], respectively.

pulsar timing (see §3)). We then form the covariance matrix
of the dataset by computing the outer product of template
matched profiles:

N
dowi(p ) (0 - 5)
C — i=1
N
S
i=1

where w; is the S/N of the i’th profile, the T superscript de-
notes transposition and the prime superscript signifies that
the profiles have been matched to the template. The result-
ing covariance matrix, C, is a symmetric matrix with the
number of rows and columns equal to the number of bins,
Nbyin, in each profile. We note that at least Npi, observations
are necessary for C to have full rank. Furthermore, the data
set should be large enough so that all potential modes of
profile variation are represented.

Template matching before subtracting the standard
profile removes three degrees of freedom from the shape
fluctuations that are intrinsic to the pulsar signal. For ex-
ample, to first order, the best-fit phase shift removes all
variations that correlate with the derivative of the stan-
dard profile with respect to pulse phase. Removing varia-
tions with a certain profile shape is equivalent to project-
ing the Npin-dimensional vector space of the total intensity
fluctuations onto the Nyj,—1-dimensional subspace that is
orthogonal to the axis defined by that profile shape. A sig-
nificant amount of the fluctuation information may be lost
by this projection. However, if the best-fit phase shift were
not first removed, any actual phase shifts would be misin-
terpreted as shape variations; therefore, this dimension must
be excluded from the analysis. Similarly, the best-fit scale
and offset remove variations in pulsar flux and system tem-
perature, respectively; these fluctuations are not the focus of
this work. In practice, all the data are fit for phase shift, flux
scale and baseline offset and these three dimensions are al-
ways projected out of the available vector space in which the
pulse profiles are described. The eigenvectors corresponding
to these three dimensions all have the same eigenvalue (zero)
and hence together form an eigenspace; we refer to the tem-
plate matching eigenspace as the fit-space throughout the
remainder of the paper.

To characterise the remaining fluctuations of the total
intensity, we solve the eigenproblem of the covariance ma-
trix. The eigenvectors e’ define the principal axes in the
Npin-dimensional vector space of profile shape variations
along which the intensity fluctuations are correlated as a
function of pulse phase. Sorting the eigenvectors in order of
decreasing eigenvalue, A, allows us to determine the most
significant variations. The variance corresponding to each
eigenvector is equal to the corresponding eigenvalue.

The eigenvectors form an orthonormal basis onto which
each residual difference profile can be projected. The pro-
jection coefficient, ayj, of the ¢’th difference profile onto j’th
eigenvector is

i = (pi — s)T el . 3)

These coefficients can be thought of as the residual of the
i’th pulse profile in the basis spanned by the eigenvectors e
and are often referred to as the principal components.

; (2)
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After the subspace projection that removes the phase
shift, scale, and offset dimensions, the remaining projection
coefficients for each residual profile are uncorrelated; i.e.,

N
Zaijaik X 5jk: (4)
i=1

where 4,1, is the Kronecker delta. However, these coefficients
may possibly be correlated with unobservable variations in
the three dof that have been removed. These correlations are
exploited by the technique developed in §4.1] where we in-
troduce a new method for using these projection coefficients
to correct the timing residuals for the statistical bias intro-
duced by pulse shape variability. Simulations to confirm our
algorithm are presented in §4.21

4.1 Correcting the timing residuals: multiple
regression

Demorestl (2007) measured the correlation between the first
projection coefficient (corresponding to the largest variance
in the data) and the arrival time residuals. This was sub-
sequently used to detect corrupted data and he has shown
that it could be used to remove their deleterious effect on
the timing residuals. However, his method only used the in-
formation stored in the first projection coefficient. Here we
apply a multi-variate statistics method of multiple regres-
sion to simultaneously remove the effects of multiple varying
components.

To predict the statistical bias in ToA estimate, I;,
caused by SWIMS we assume that there is a linear func-
tion relating this bias to the projection coefficients. We use
the observed timing residuals, R;, to determine the best-fit
parameters for this function.

We wish to predict I; using the linear predictor

Ilza—&—Af‘ (5)

where a and A are the regression coefficients of the linear
predictor. These are determined from the observed residuals
by minimising the mean squared error between the predicted
and observed residuals: S:Z (Ri — Ii)2. The analytic solution

is given by (Johnson [1998):

A=D""~, (6)
and

a=v+ AT/L ) (7)
where

Z (ai— <a>)(ai—- <« >i)T

=1
D= ~ ; (8)

is the covariance matrix of the projection coefficients, v is
the vector of covariances between the residuals and the pro-
jection coefficients

N = ((aT)j -~ < (ah), >) (R-v) , )

and v is a vector with each element equal to the mean of
the observed residuals. The elements u; are the mean val-
ues of a; and < . > denotes average of vectors. The values
of A and a allow us to predict the bias in ToA estimation

induced by pulse shape variations. This predictor has min-
imum mean squared error and maximum correlation with
the R;. Subtracting the predicted bias from the estimated
arrival times has the potential to reduce the post-fit arrival
time residual rms.

The expected improvement in timing residuals can be
calculated from the projection coefficients and the observed
residuals as

/

Z =12, (10)

o

where

/77D "'y

Here ¢’ is the rms timing residual for ToAs with the bias
removed and p is called the population multiple correlation
coefficient.

It is necessary to restrict the number of eigenvectors to
model only pulse variability. Many approaches have been put
forward in the literature for determining the number of sig-
nificant principal axes (Johnson [1998). We introduce a new
parameter, £;, which is the Pearson’s product moment cor-
relation coefficient between the the timing residuals, R, and
the projection coefficients onto the j’th eigenvector, that is
the j’th row of . The standard deviation of non-significant
£ values is determined. Significant values are identified us-
ing a Tukey’s bi-weighting scheme starting with an initial
guess of the standard deviation obtained from the median
absolute deviation. The resulting standard deviation of the
£ values is a robust and resistant estimator. For more details
seelAndrews (1972) and [Hoaglin et all (1983). Starting from
the last correlation coefficient we search for three consecu-
tive £ values that are more than three times this measured
standard deviation. The number of the eigenvectors used
in all subsequent processing is equal to the index of last of
these three values, when counting from one. For cases in
which fewer than three £ values are significant, we compare
the results of using only one eigenvector with those of using
the first five.

An implementation of this method is publicly available
as a part of the PSRCHIVE suite. The relevant applica-
tion is called “psrpca” and it requires the GNU Scientific
Libraryﬁ to work.

4.2 Simulations

To confirm that our method correctly detects pulse shape
variations that can be used to correct statistical bias in ToA
estimation, we carry out three simulations of data with noise
in the third regime (i.e., SWIMS). In every simulation, each
observed profile is replaced by a copy of the template profile
plus white noise and additional varying components. The
amount of white noise is set such that in many random re-
alisations of the simulated observation the mean S/N of the
simulated profile would match that of the given observation.
Although there can be several subpulses per pulse period,
we illustrate the technique using a simple model in which
only a single subpulse is added per minute of observation.

6 http://www.gnu.org/software/gsl/
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Figure 6. First eigenvector for simulation with white noise, ar-
bitrary shifts and a von Misses component on top of the template
profile. Notice that this eigenvector does not look purely like von
Mises distribution as it has to be orthogonal to the fit-space.

Note that this procedure does not affect the observing pa-
rameters (such as frequency, observation time etc.) which are
held fixed at the values in the actual observations. The re-
sulting simulated observations are cross-correlated with the
template to form ToAs (and hence residuals) in exactly the
same manner as the actual observations.

We initially tested the trivial cases of simulated data
with white radiometer noise only with or without arbitrary
phase shifts applied to the data. As expected, no signifi-
cant eigenvectors were detected in either case. Attempting
to correct the residuals regardless of that yields no signif-
icant improvement in the rms timing residual. These two
cases demonstrate that our method will not artificially de-
crease the arrival time residual arising from white noise or
arbitrary phase shifts. The latter could arise from any phase
shift such as that due to a gravitational wave and it is im-
portant that such signal is not removed by the PCA.

4.2.1  Simulation 1: Single, fized component

Pulsar emission is often modelled as consisting of multiple
Gaussian components (e.g. Kramer et al! 1999). Many pul-
sars show mode changing where one or more components are
active for only a finite amount of time (Wang et al!|2007). To
verify that the bias introduced by a single “mode changing”
component can be detected and corrected, we now include
an extra component in the profile that varies in amplitude.
This component is created from a von Mises function (which
is a periodic analog to a Gaussian distribution) with a nor-
mally distributed amplitude that has a mean value of zero
and an rms of 3% of the peak template flux. This compo-
nent is centred at pulse phase 0.504 and has a concentration
parameter equal 0.113bins~2. The resulting weighted rms
timing residual was 255 ns and X2/dof = 14.4, while with-
out the additional component the same realisation of white
noise leads to an rms of 59ns and a x?/dof of 1.0. We em-
phasise that this increased rms residual and high X2/dof is
due solely to the pulse shape variations and therefore should
be detected and corrected using our method.

We obtain a significant first eigenvalue. The automatic

Table 1. Parameters of the multi-component simulation.

1 2 3 4 5 6

centre 0.504 0.496 0.512 0.524 0.509 0.520
amplitude 0.74% 0.36% 0.86% 1.4% 0.7% 0.4%
K 0.452 0.164 0.098 0.050 0.577 0.104

determination of useful eigenvectors fails, as there is only
one significant eigenvector, associated with the introduced
profile variation. Figure [0l shows the first eigenvector, which
is different from the introduced component as it is projected
onto the Npin — 3 dimensional space, in which the three di-
mensions corresponding to the fit-space are removed. Al-
though these degrees of freedom have been removed, the
residual shape variation is still highly correlated with the
ToA residual, as discussed above. Correcting the residuals
using the one significant eigenvector reduces the rms residual
to 67ns and the x?/dof to 1.0. We note that this improve-
ment agrees very well with prediction from equation [0l We
calculate reference residuals by simulating and timing data
without any additional components but with the same real-
isation of white noise as in the simulation with the varying
component. As expected the corrected residuals are highly
correlated with the reference residuals (correlation coeffi-
cient of 0.93). This indicates that we have recovered most
of the signal in the original residuals and have removed the
effect of the pulse variability.

We note that after removing the bias in ToA residuals
the weighted rms timing residual is almost the same as in
the case of reference residuals; however, the x?/dof can be
smaller than that of the reference residuals because the ToA
uncertainties have increased. The total intensity fluctuations
decrease the cross-correlation between the observation and
the template, thereby increasing the estimated uncertainty
(see equation A10 from [Taylor [1992).

In order to check the effect of using a different number of
eigenvectors to correct the timing residuals, we re-analysed
the data using five eigenvectors. In this case the rms residual
and 2 /dof were 64 ns and 0.92 respectively. The corrected
residuals are still pleasingly highly correlated with the refer-
ence residuals. We therefore conclude that our result is not
highly sensitive to the number of eigenvectors used, but care
needs to be taken when choosing that number.

In addition, we also tested an extended version of this
simulation, where arbitrary phase shifts were included to
simulate, e.g., the effect of gravitational waves. As expected,
only the bias in the timing residuals due to the introduced
profile variation is removed and the arbitrary phase shifts
remain unaffected. Again, the residuals are highly correlated
with reference residuals where the same realisations of white
noise and arbitrary shifts were introduced.

4.2.2  Simulation 2: Multiple, fized components

The previous simulation dealt with only a single varying
component while many pulsars can emit radiation simul-
taneously from several components. Even if only one of the
multiple components was present in each rotation of the pul-
sar, several components would be present after integration
over multiple pulse periods. To demonstrate again that PCA
and multiple regression do not remove phase shifts that are
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not caused by pulse shape variations, we now introduce six
von Mises functions whose amplitudes are allowed to vary
independently. The parameters of these components are pre-
sented in Table[I] where centre is the central phase of a von
Mises component in pulsar turns; amplitude is the rms of
the amplitude distribution of given component, in units of
the template’s peak flux; and « is the concentration param-
eter of the von Mises distribution in units of bin~2. We also
apply arbitrary phase shifts after adding the varying com-
ponents. This leads to a weighted rms residual of 372 ns and
x?/dof of 32.1. Note that the reference residuals obtained
from a simulation with the same realisation of white noise
and arbitrary phase shifts, but no additional components,
have an rms of 206 ns and x?/dof of 12.2 due to the ar-
bitrary phase shifts; i.e., we do not expect the rms to be
of the same order as the ToA measurement error after bias
removal.

Our method gives corrected residuals with weighted rms
residual of 216 ns (x?/dof = 10.8) and they are highly cor-
related with the reference residuals. With multiple compo-
nents the bias is not completely removed because more than
one projection coefficient correlates with the arrival time
residual and these projection coefficients may not be statis-
tically independent of each other. Nevertheless, significant
improvement in the rms residual and in the X2/dof is ap-
parent and much of bias is removed. The additional shifts,
corresponding to unmodelled timing noise processes are still
unaffected; i.e., the post-correction residuals are highly cor-
related (correlation coefficient of 0.87) with the reference
residuals.

4.2.8  Simulation 3: Single, random component

We now consider a possibly more realistic case of the pul-
sar emission being erratic and distributed in phase over the
whole region in which the average profile is visible; this case
corresponds to the stochastic nature (Cordes & Downgd|1985;
Cordesd 11993) of modulated pulses. In this simulation we al-
low a single von Mises component per simulated profile to be
centred anywhere in within the central peak (central phase
uniformly distributed between 0.479 and 0.518). The concen-
tration parameter of the component is uniformly distributed
between 0.055 and 1.386 bin~2. The amplitude of this com-
ponent is normally distributed with an rms equal to 2.3%
of the intensity of the template at the centre phase of the
component. This value is chosen in order that the resulting
rms timing residual is 380 ns and x?/dof value of 35.1, both
very close to the observed values for PSR J0437—4715.

Multiple significant eigenvectors are detected, with the
number varying between different realisations from 10 to
50. Correcting the residuals reduces the rms to 266 ns and
x%/dof to 17.2. We note that in this simulation no arbitrary
shifts were included and therefore we conclude that the PCA
method has failed to completely remove the bias in ToAs
(and hence in residuals) induced by this kind of erratic shape
variation. As explained in §4]some fraction of the fluctuation
power is lost during the vector subspace projection effected
by removing the best-fit shift, scale, and offset. As before,
for data integrated over multiple pulse periods, more than
one varying component per pulse profile would be present
and this could make it even more difficult to remove the bias
in ToAs.
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Figure 7. Distribution of correlation coefficients between the
residuals and projection onto eigenvectors for the actual obser-
vations, shown by open circles. Several correlation coefficients are
more than 3 standard deviations (denoted by the dashed lines)
above the background noise level. Only the first 150 correlation
coefficients are shown, the rest of the correlation coefficients look-
ing very similar as the last shown. The crosses are showing the
corresponding eingenvalues normalised by their sum, multiplied
by a factor of 10 and offset by —0.45 for clarity of the figure.

5 RESULTS

Applying our method to the observed dataset of 1145 profiles
leads to:

e the detection of significant pulse shape variations with
at least ten significant eigenvectors,

e areduction in rms timing residual from 372 ns to 294 ns
and a reduction in x?/dof from 33.8 to 21.1.

The first 150 values of £ are plotted in Figure [7] which
indicates that around 10 eigenvectors significantly correlate
with the observed residuals while the rest are consistent with
being white noise. The choice of exact number of eigenvec-
tors would be difficult to make without the rigourous criteria
described before. In Figure[8, we present the three most sig-
nificant eigenvectors overlaid on the pulsar template profile.
The detection of significant eigenvalue-eigenvector pairs is a
direct consequence of temporally correlated fluctuations in
total intensity; i.e., significant shape variations are detected.
As discussed in Il §2] and §3] it is likely that such varia-
tions originate from the pulse-to-pulse variations of the pul-
sar emission. The most significant variation occurs at phase
0.497, in the main peak of the pulse profile. The majority
of other significant eigenvectors peak around the main and
second highest peak in the mean profile. One exception is
the 10th eigenvector that peaks at phase 0.385, that is in
the local peak on the left hand side of the main peak.

Using the 10 most significant eigenvectors to correct the
bias in arrival time estimates, the rms timing residual was
reduced by 20% and x?/dof was reduced by 36%. Only 3% of
the variance in the timing residuals can be attributed to the
most significant eigenvector; therefore, multiple regression is
required to provide the best estimate of statistical bias. The
third simulation has demonstrated that pulse profile vari-
ability can introduce bias in ToAs that cannot be removed
completely using our method and the timing residuals after
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Figure 8. First three eigenvectors for the observed data. We show only the central part of the profile for clarity. The vertical thick lines
separate the eigenvectors. The dashed line represents the scaled template added for reference.

bias correction are still biased. Therefore, even though only
20% of the rms timing residual is corrected, there need not
be another explanation for the remaining timing noise. For
completeness, other effects that might contribute to the rms
of timing residuals are discussed in the next section.

To investigate if the intensity fluctuations arise from a
stationary stochastic process, at least in the wide sense, we
used five hours of observations of PSR J0437—4715 during
July 2009 obtained using the same observing system as de-
scribed in §3l These additional data were processed to form
pulse profiles, arrival times and timing residuals in exactly
the same way as our main data set. We used the eigenvec-
tors and regression coefficients obtained above to correct
these July 2009 timing residuals. We again achieved a 22%
decrease in the rms timing residual from 380ns to 296 ns
and the x?/dof was reduced by 36% from 39.1 to 24.9. The
fractional improvement is similar to before, implying that
the covariance matrix and hence profile variability is sta-
tionary in time and that after the regression coefficients and
eigenvectors have been determined for one dataset they can
subsequently be applied to other observations of the same
pulsar obtained with the same instrumentation and observ-
ing parameters.

6 DISCUSSION

We first discuss the method that we have introduced to
search for and correct pulse shape variability. Second, we
discuss the astrophysical implications of broad-band profile
shape variations intrinsic to the pulsar.

6.1 Discussion of the method

It is clear from the simulations that our method successfully
detects significant pulse shape variations and partially cor-
rects the bias induced in timing residuals due to such vari-
ations in many cases. The method has certain limitations.
First, in order for the covariance matrix, C, to have full rank,
the method requires at least Nuin observations. With fewer

observations than phase bins, it may be necessary to average
adjacent phase bins, or, if prior knowledge suggests that the
pulse variability occurs in only a restricted region then only
these bins could be included in the analysis. If full phase
resolution is required then the covariance matrix can be de-
termined, but not all of the eigenvectors can be calculated.
Alternatively, following [Demorest (2007), the PCA method
can be developed in the frequency domain using only the
significant harmonics thus reducing the number of required
observations.

A large number of observations is desirable for two rea-
sons. Firstly, dividing a fixed observing time into smaller in-
tervals provides a greater number of estimates of the pulse
profile, thereby increasing the S/N of the covariance matrix
estimate. Secondly, even for N > Np;, our method is lim-
ited by the SEFD present in all observations. Such noise will
reduce the precision with which the eigenvectors may be de-
termined, reducing their ability to fully describe the shape
variations. For instance, in the timing residuals of simula-
tions with only white radiometer noise added, even though
no significant eigenvalues were measured, the rms timing
residual is reduced by a negligible amount when using just a
few eigenvectors. When all of the eigenvectors are included
in the bias removal, the effects of white noise are artificially
reduced. This occurs because the white radiometer noise af-
fects the regression coefficients a and A in equation[dl Since
the eigenvectors are measured using the data that are being
“corrected’, the noise in the eigenvectors correlates with the
noise in the data. This is similar to the “self-standarding”
effect that arises when the mean of a set of observed pro-
files is used as the template to derive arrival times from
the same data, as described in Appendix A of [Hotan et al
(2005). Applying the eigenvectors to a completely indepen-
dent data set leads to no significant change to the timing
residuals as the noise in the data no longer correlates with
noise in the eigenvectors. The degree of correlation between
individual residual profiles and the white-noise eigenvectors
may also be reduced by increasing the number of observa-
tions from which the covariance matrix C is estimated. If
the eigenvectors are obtained from the data to be corrected,
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then it is essential to apply the rigourous criteria described
in §4.1] to choose only the significant eigenvectors.

Many pulsar observations are affected by radio fre-
quency interference (RFI) and the measured eigenvectors are
extremely sensitive to the presence of RFI in the data. As
pointed out by [Demorest (2007), PCA is also a sensitive and
robust method for detecting RFI and other types of data cor-
ruption and distortions. It is therefore essential that the data
used in forming the eigenvectors are unaffected by RFI. In
our case nearly 32% of the pulse profiles had to be rejected.
RFI might also be mitigated through the use of a robust es-
timator of the covariance matrix, such as the minimum co-
variance determinant estimator (Hubert & Debruyne 2010).

In contrast to more traditional applications of the PCA
method, our method relies on first aligning each pulse profile
to the template using the best-fit phase shift, scale, and base-
line offset. As a result of this fit, the last three eigenvalues
are several orders of magnitude smaller (i.e., close to zero)
and the corresponding eigenvectors spanning the fit-space
are highly correlated with the template profile, its phase
derivative, and the baseline offset or their linear combina-
tions. In other words, the profiles are originally described
in an Npi, dimensional vector space and the fit projects the
data onto Ny, —3 dimensional vector space in which the fit-
space has been removed. This removes three degrees of free-
dom from the remaining eigenvectors and limits the efficacy
of the correction scheme presented in this paper because
the fit-space component of the intrinsic shape fluctuations
has been removed. Consequently, the bias due to any intrin-
sic shape fluctuations that correlate with these eigenvectors
cannot be fully corrected. This is especially important in
the case of profile variations correlated with the template
derivative as such variations will introduce most bias in the
ToAs. Only the total intensity fluctuations that are orthog-
onal to the fit-space contribute to the predictor computed in
equation Bl The degree to which such fluctuations are cor-
rectable depends on how strongly they correlate with these
three eigenvectors and the degree of correlation between the
remaining projection coefficients and the arrival time resid-
ual.

We note that our work has implications for any relevant
template matching algorithms. Such algorithms normally as-
sume that the errors in the measurements of intensity are ho-
moscedastic and uncorrelated. Our detection of profile vari-
ations implies that the errors are, in fact, heteroscedastic
and correlated. We note that including the covariance ma-
trix, which carries the information about the correlation and
heteroscedasticity of the noise, into the template matching
algorithms will yield better estimates of ToA uncertainty. It
may also remove the necessity of correcting the residuals by
the means described in this paper because any statistical bi-
ases caused by the intensity fluctuations might be removed
at the time of ToA determination. This is similar to the
Cholesky decomposition which can remove bias in estima-
tion of various parameters, such as parallax, when estimat-
ing from residuals with red noise present (Coles et alll2011).
Examples of template matching algorithms are the stan-
dard ToA derivation algorithm presented by [Taylon (1992)
and the matrix template matching algorithm that allows
all Stokes parameters to be used in the ToA estimation
(van Straten 2006). An unbiased generalisation of template
matching would be a logical extension of this work.

6.2 Application to PSR J0437—4715

Using one-minute integrations of PSR J0437—4715, we have
detected shape fluctuations that we attribute to the stochas-
tic subpulse structure of the pulsar emission. However, for
many timing applications, the exact cause of the pulse shape
variations is irrelevant. This technique can be used to cor-
rect bias and improve sensitivity to any phenomena that do
not induce shape variations. For instance, in order to place
a limit on the existence of a gravitational wave background
(e.g. lJenet et all[2006) some methods compare the amount
of power in the timing residuals with the power predicted
to be induced by gravitational waves. Such waves will not
affect the pulse profile shape. Therefore, reducing the rms
timing residuals by accounting for pulse shape variations al-
lows an improved limit on the existence of a gravitational
wave signature to be obtained. We note that our correction
method does not remove any of the signal induced by gravi-
tational waves or any other phase shift of the pulsar profile,
as verified by the simulations.

The long term timing of PSR J0437—4715 shows signif-
icant low frequency structure present in the residuals (e.g.
Verbiest et all [2008). Such red timing noise is a common
type of non-Gaussianity (in general any asymmetric distri-
bution will have a similar effect) in the timing residuals. It is
important to determine the best predictor for correcting the
residuals based on a short data span, as it will be less affected
by any non-Gaussian noise. In the presence of non-Gaussian
components, the best predictor will be affected as the cor-
relation coefficients £ between the residuals and projection
coefficients will be biased toward zero. Presence of Gaussian
noise (or any other symmetrically distributed noise) will in-
crease the uncertainty in the estimate of £ values but will
not bias them.

The timing residuals for our Parkes observations are
only partially corrected by our new method. We have
demonstrated that partial correction does not necessarily
imply the existence of other sources of scatter in ToA resid-
uals that do not affect the pulse shape. At the same time it
is not possible to completely exclude the existence of other
effects such as hardware or software errors that are affecting
the timing residuals at a lower level. Other possible effects
that can increase the rms timing residual are described in
detail by ICordes & Shannon (2010); [Liu et all (2011). Such
issues are beyond the scope of this paper, which concen-
trates solely on the pulse shape variability. We note that if
any other non-white process affecting the residuals could be
corrected, the residuals induced by profile shape variations
could be removed more completely as the estimates of £ are
affected by the presence of phase noise.

We stress that the intrinsic shape variations lead to the
heteroscedastic and correlated component of the SWIMEﬂ.
The uncorrelated component, originating from the standard
radiometer noise in the weak source limit and the self-noise,
is described by the diagonal of the covariance matrix C while
the temporally correlated part is described by the off diag-
onal elements. However, whatever phenomena contribute to
the correlated component will naturally also contribute to

7 We postpone the calculation of the expected amount of ToA
scatter introduced by SWIMS (based on the measured covariance
matrix) to following publications.
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the diagonal of the covariance matrix. As the self-noise and
subpulse modulation are all measured and described simul-
taneously by the covariance matrix, it is natural to con-
sider them all as one phenomenon, which we called SWIMS
throughout this paper. Two details of covariance matrix we
would like to stress are that: a) it does not contain any in-
formation about the spectral correlation of the noise and
b) the measured covariance matrix also contains a contri-
bution from the SEFD which can be subtracted if neces-
sary. Extrinsic sources can also introduce a heteroscedastic
and correlated component of noise, such as lightning strikes,
other types of RFI or some instrumental effects, such as
non-linearity of the backends. The effects of impulsive inter-
ference should be present across the whole pulse profile as
they occur randomly in pulse phase. After careful removal
of RFI, the measured eigenvectors are consistent with white
noise outside the mean profile (see §5).

As shown in Figure [B] interpretation of the eigen-
vectors derived from the covariance matrix is complicated
by the fact that the fit-space has been projected out of the
Npin-dimensional space of the shape variations. To investi-
gate the structure of the shape variations prior to this pro-
jection, one can make the assumption that the pulsar tim-
ing model accurately predicts pulse phase (at least over the
time-scale of the observations) and compute the covariance
matrix of observed profile residuals after template matching
by varying only the scale and offset (i.e. no phase shift). In
this case, the covariance matrix contains the cyclic, phase-
resolved autocorrelation [autocorrelation function (ACF)] of
the intensity fluctuations. The mean ACF computed by sum-
ming elements along the diagonals of this matrix is plotted
in Figure[d The characteristic width of ACF, as determined
by fitting a Laplace function, is equal to 67 ws, which is
consistent with the average width of microstructure events
reported by lJenet et all (1998). For comparison, the mean
ACF formed from the covariance matrix used for bias re-
moval (i.e. best-fit phase shift removed) is also plotted with
a dashed line. A large fraction of the fluctuation power is re-
moved by fitting for the phase shift during template match-
ing. The phase shift fit removes variations that correlate
with the template derivative, and the autocorrelation of the
template derivative reaches its first minimum (below zero)
at roughly the width of the pulse profile (around 140 us).
This corresponds with the first dip seen in the ACF formed
from data in which no phase shift has been removed; no dip
is present in the ACF formed after fitting for phase shift.
The measured ACF may be affected by other non-intrinsic
effects, especially those related to propagation through in-
terstellar medium (ISM; |Smits et all[2003). We argue below
that the ISM is not an important factor in considerations of
PSR J0437—4715. The ACF shows a periodic ripple (most
apparent at large phase lags), which is believed to be an in-
strumental artefact; it has a period of roughly 100 us. Its ori-
gin is currently unknown. Preliminary analysis of data from
another instrument (Caltech Parkes Swinburne Recorder 2,
CPSR2; [Bailes [2003; [Hotan [2006) confirms that this effect
is intrinsic to PDFB3 as the ACF calculated from CPSR2
has no periodic ripple present. The pulse profile variations
are still detected thus confirming their origin as intrinsic to
the pulsar.

The interstellar medium can also introduce shape varia-
tions, such as broadening of the pulse profile, which increases

0.2 T T T T T T T T T

ACF
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Figure 9. The ACF calculated with the assumption of the timing
model accurately predicting the pulse phase over the course of
observations (solid line) and without this assumption, i.e., when
performing a full template matching (dashed line). The width of
the ACF is determined by the characteristic width of single pulses
(Rickett!|1975). The SEFD contributes an unresolved spike at zero
lag, which is scaled to unit height for the solid line and the dashed
line uses the same scaling factor.

quadratically with DM and decreases quartically with fre-
quency. Given the very low DM = 2.64 cm 3pc and the
observing wavelength ~ 20 cm used in this work, the ex-
pected variations in the pulse width for PSR J0437—4715
due to broadening are of the order of 1 ns (Bhat et alll2004;
Gwinn et all [2000). Interstellar scintillation combined with
frequency dependence of the pulse profile can also lead to
fluctuations of ToAs. As shown in Figure [Bl the residuals are
highly correlated when estimating the ToAs from two sepa-
rate frequency channels. This high correlation implies that
diffractive narrow-band interstellar scintillation is not re-
sponsible for the additional scatter. As we observe variations
on a time-scale of minutes it is unlikely that broadband re-
fractive scintillation is a contributing factor to the observed
pulse shape changes as the time-scale for such variations is
of the order of 1000 s (Gwinn et all[2006). Based on the high
degree of correlation between arrival times measured in sepa-
rate bands (Figure[5]) and the observed broadband nature of
single pulses (Figure[]), we conclude that the intensity fluc-
tuations are correlated over wide bandwidths. Consequently,
increasing the bandwidth does not increase the timing pre-
cision. Only active mitigation or longer integrations can re-
duce the timing rms if the fluctuations of total intensity
are indeed the main cause of the arrival time variations that
greatly exceed the predicted uncertainty. Simultaneous mul-
tifrequency observations of PSR J0437—4715 would help to
determine if the shape variations are persistent over very
wide bands. Some observations to date have shown that
the giant pulses from Crab extend over GHz bandwidths
(Sallmen et all [1999; [Hankins et al! [2003; [Hankins & Eilek
2007). Another group has shown that the single pulses in
PSR B0329+-54 persist across 1.3 GHz (Karastergiou et al.
2001) but this may not be true for all subpulse structure in
the general population of pulsars.

It is also worth considering the impact of polariza-
tion variations on arrival time estimates. Emission from
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PSR J0437—4715 is highly polarised and a sudden change
in the position angle of the linear polarisation occurs
near the peak in the total intensity profile (as noted by
Navarro et alll1997). This implies that poor polarisation cal-
ibration will lead to significant profile changes, as quantified
by lvan Straten (2006). For a single dish that is not equatori-
ally mounted, these variations occur on time-scale of hours.
Pulse profile shape changes detected by [Vivekanand et al.
(1998) were argued to be caused by calibration errors
(Sandhu et al! 1997). Even though we detect fluctuations
of the total intensity pulse profile on much shorter time-
scales, we investigated if this was the case in our data as
well. We studied the bias in timing residuals induced by the
measured pulse shape variation as a function of parallac-
tic angle. We found that there was no dependence between
these two quantities. We also applied the PCA to uncali-
brated data and a correlation between the induced bias [
and the parallactic angle was readily apparent.

We conclude that the shape variations are more likely to
originate at the pulsar rather than in the observing hardware
or from interference. The polarisation calibration has been
performed sufficiently to alleviate at least minute-time-scale
fluctuations and does not introduce detectable pulse shape
variations. The interstellar medium is also unlikely to cause
such variations. Even if the detected variability is not intrin-
sic, the presented methodology remains valid. The intrinsic
variation is expected from the stochastic subpulse structure
and will be detectable if the pulsar is bright enough.

Since the detected variations are likely to be intrinsic
to the pulsar, a question arises whether the profile varia-
tions in PSR J0437—4715 are related only to SWIMS or if
they are due to mode changing. We searched for clustering
in the space spanned by the projection coefficients onto the
ten significant eigenvectors by applying a friends-of-friends
algorithm known from n-body simulations to identify dark
matter haloes (Davis et all [1985). We did not find any ev-
idence of clustering in this space and hence conclude that
the pulse profile variations are not due to mode changing.

We would like to stress the importance of our work for
the next generation telescopes, which are likely to provide
more sensitivity than currently available. With its huge col-
lecting area of 1km?, the Square Kilometre Array (SKA) is
expected to revolutionise pulsar astronomy. One of the Key
Science Projects of the SKA requires pulsar observations
with the highest possible timing precision (Kramer et all
2004). It is assumed that the SKA will observe of the or-
der of 100 millisecond pulsars with an rms timing precision
better than 100 ns. With the SKA’s phenomenal sensitivity,
the S/N of a pulse profile should be >1000 on a time-scale of
only minutes for many pulsars (compared with many hours
with the Parkes telescope). The short observing times re-
quired to achieve such high S/N ratios would allow the SKA
to observe multiple pulsars in a short time. However, the
increased sensitivity of next-generation telescopes will also
increase the relative importance of SWIMS as the radiome-
ter noise is decreased. If the intrinsic pulse shape variations
that we have detected for PSR J0437—4715 are typical of
many MSPs at the observing frequency being used, they
will induce a floor on timing precision that can be amelio-
rated only with longer integration times and active mitiga-
tion using methods such as the one presented in this work.
Cordes & Downs (1985) demonstrated that, for the major-

ity of their sample of 24 pulsars, timing precision is likely
to be limited by phase jitter. No millisecond pulsars were
included in this sample. [Shannon & Cordes (2010) later ar-
gue that the timing noise of millisecond pulsars is similar
to that of classical pulsars, only much smaller. Although
SWIMS has not yet been detected in most pulsars, it is likely
to be revealed with better instrumentation, more sensitive
telescopes or longer data spans. Since the detected pulse
shape variations are likely to be very broadband, increasing
bandwidth will not reduce the bias introduced by SWIMS.
This must be considered when predicting the potential sci-
ence of current and future pulsar timing array projects and
the observing time and strategy necessary to achieve the
stated goals. For example, with an SKA-like telescope, if
many pulsars in a timing campaign are limited by SWIMS,
then it is better to observe multiple pulsars simultaneously
with fraction of the array for longer time rather than us-
ing full sensitivity to observe pulsars one by one for a short
time. Some proposed astrophysical experiments demand ex-
tremely accurate ToAs over short intervals of the order of
minutes, such as when a pulsar passes behind black hole in
a close binary. SWIMS will make such experiments difficult
or impossible.

The relative importance of the correlated component
of SWIMS is also expected to vary between pulsars as it
depends on intrinsic subpulse emission properties and the
shape of the average pulse profile. The fractional improve-
ment in rms timing residual is expected to vary from case
to case and it can be hoped that for pulsars with simpler
and/or narrower profiles, variability in the subpulse struc-
ture will be less severe. As demonstrated by our first simu-
lation, in simple cases our method works very well and can
completely remove the statistical bias in ToAs for some pul-
sars. Our method can be used to identify pulse profile modes
which can lead to improved timing.

We note that, for current telescopes, equation [ is a
good approximation for the vast majority of MSPs, which
have time averaged mean flux densities an order of mag-
nitude smaller than PSR J0437—4715. For example, in the
Parkes Pulsar Timing Array sample, fluxes vary between 1.3
and 13.8 mJy (see Table 2 of [Yan et alll2011) with a median
value of 2.4 mJy, compared to the mean value of 150 mJy for
PSR J0437—4715. Consequently, the profile variability aris-
ing from SWIMS has been neglected to date. We note that
future telescopes like the SKA are likely to perform timing
array experiments at higher frequencies to avoid some of
the problems caused by the interstellar medium. Whether
SWIMS will be a crucial limitation to precision timing for
the majority of pulsars at all observing frequencies remains
to be seen.

7 CONCLUSION

We have developed an extended principal component anal-
ysis method that is applicable to searching for pulse
shape variations in pulse profiles. Applying this method to
PSR J0437—4715 shows the presence of pulse profile vari-
ability that is likely to be intrinsic to the pulsar. The statis-
tics of this variability are consistent over many months. The
detection of significant intensity fluctuations implies that
self-noise may be a limiting factor for timing precision of
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PSR J0437—4715 for current generation of telescopes. Fu-
ture technological developments including construction of
larger antenna and increased instrumental bandwidth will
not improve timing precision as the subpulse structure is
a source-intrinsic broadband phenomenon. However, the ef-
fects of SWIMS can be partially corrected by the method
presented in this work and the proposed generalised tem-
plate matching.

ACKNOWLEDGEMENTS

The Parkes Observatory is part of the Australia Telescope
National Facility which is funded by the Commonwealth of
Australia for operation as a National Facility managed by
CSIRO. We thank the staff at Parkes Observatory for tech-
nical assistance during observations. The authors are grate-
ful for helpful discussions with Carl Gwinn, Xavier Siemens,
Ryan Shannon, Richard Manchester and Mike Keith. We
thank the anonymous referee for valuable comments that
helped improve the text. This work is supported by Aus-
tralian Research Council grant # DP0985272. GH is sup-
ported by an Australian Research Council QEII Fellowship
(project # DP0878388).

REFERENCES

Andrews D., 1972, Robust Estimates of Location: Survey
and Advances. Princeton University Press, Princeton

Arzoumanian Z., 1995, PhD thesis, Princeton University

Backer D. C., 1970, Nature, 228, 1297

Backer D. C., Sallmen S. T., 1997, AJ, 114, 1539

Bailes M., 2003, in Astronomical Society of the Pacific
Conference Series, Vol. 302, Radio Pulsars, M. Bailes,
D. J. Nice, & S. E. Thorsett, ed., p. 57

—, 2010, in TAU Symposium, Vol. 261, IAU Symposium,
S. A. Klioner, P. K. Seidelmann, & M. H. Soffel, ed., Cam-
bridge Univ. Press, Cambridge, UK, pp. 212-217

Bartel N., Morris D.; Sieber W., Hankins T. H., 1982, ApJ,
258, 776

Bhat N. D. R., Cordes J. M., Camilo F., Nice D. J., Lorimer
D. R., 2004, ApJ, 605, 759

Boynton P. E.; Groth E. J., Hutchinson D. P., Nanos Jr.
G. P., Partridge R. B., Wilkinson D. T., 1972, ApJ, 175,
217

Britton M. C., 2000, ApJ, 532, 1240

Cairns 1. H., 2004, ApJ, 610, 948

Cognard 1., Shrauner J. A., Taylor J. H., Thorsett S. E.,
1996, ApJ Lett, 457, 181

Coles W., Hobbs G., Champion D. J., Manchester R. N.,
Verbiest J. P. W., 2011, MNRAS, in press

Cordes J. M., 1980, ApJ, 237, 216

—, 1993, in Astronomical Society of the Pacific Conference
Series, Vol. 36, Planets Around Pulsars, J. A. Phillips,
S. E. Thorsett, & S. R. Kulkarni, ed., pp. 43-60

Cordes J. M., Downs G. S., 1985, ApJS, 59, 343

Cordes J. M., Helfand D. J., 1980, ApJ, 239, 640

Cordes J. M., Shannon R. M., 2010, ArXiv e-prints

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985,
AplJ, 292, 371

Demorest P. B., 2007, PhD thesis, University of California,
Berkeley

Dewey R. J., Taylor J. H., Weisberg J. M., Stokes G. H.,
1985, ApJ Lett, 294, 1.25

Drake F. D., Craft Jr. H. D., 1968, Science, 160, 758

Durdin J. M., Large M. 1., Little A. G., Manchester R. N.,
Lyne A. G., Taylor J. H., 1979, MNRAS, 186, 39P

Foster R. S., Backer D. C., 1990, ApJ, 361, 300

Groth E. J., 1975a, ApJS, 29, 443

—, 1975b, ApJS, 29, 453

—, 1975¢, AplJS, 29, 431

Gwinn C., 2004, PASP, 116, 84

Gwinn C. R., 2001, ApJ, 554, 1197

—, 2006, PASP, 118, 461

Gwinn C. R., Hirano C., Boldyrev S., 2006, A& A, 453, 595

Gwinn C. R., Johnson M. D., 2011, ApJ, 733, 51

Gwinn C. R., Johnson M. D.; Smirnova T. V., Stinebring
D. R., 2011, ApJ, 733, 52

Hankins T. H., Eilek J. A., 2007, ApJ, 670, 693

Hankins T. H., Kern J. S., Weatherall J. C., Eilek J. A.,
2003, Nature, 422, 141

Hankins T. H., Moffett D. A., Novikov A., Popov M., 1993,
AplJ, 417, 735

Helfand D. J., Manchester R. N., Taylor J. H., 1975, ApJ,
198, 661

Helfand D. J., Taylor J. H., Backus P. R., Cordes J. M.,
1980, ApJ, 237, 206

Hellings R. W., Downs G. S., 1983, ApJ Lett, 265, L.39

Hoaglin D. C., Mosteller F., Tukey J. W., eds., 1983, Un-
derstanding robust and exploratory data analysis, Wiley
series in probability and mathematical statistics. Wiley-
Interscience

Hobbs G., Coles W., Manchester R., Chen D., 2010, ArXiv
e-prints

Hobbs G., Miller D., Manchester R. N., Dempsey J., Chap-
man J. M., Khoo J., Applegate J., Bailes M., Bhat
N. D. R., Bridle R., Borg A., Brown A., Burnett C.,
Camilo F., Cattalini C., Chaudhary A., Chen R., D’Amico
N., Kedziora-Chudczer L., Cornwell T., George R., Hamp-
son G., Hepburn M., Jameson A., Keith M., Kelly T., Kos-
mynin A., Lenc E., Lorimer D., Love C., Lyne A., Mcln-
tyre V., Morrissey J., Pienaar M., Reynolds J., Ryder G.,
Sarkissian J., Stevenson A., Treloar A., van Straten W.,
Whiting M., Wilson G., 2011, PASA, in press

Hobbs G. B., Edwards R. T., Manchester R. N.,; 2006, MN-
RAS, 369, 655

Hotan A. W., 2006, PhD thesis, Centre for Astrophysics
and Supercomputation, Swinburne University of Technol-
ogy

Hotan A. W., Bailes M., Ord S. M., 2004a, MNRAS, 355,
941

—, 2005, MNRAS, 362, 1267

Hotan A. W., van Straten W., Manchester R. N., 2004b,
Publ. Astron. Soc. Aust., 21, 302

Hubert M., Debruyne M., 2010, Wiley Interdisciplinary Re-
views: Computational Statistics, 2, 36

Hyvarinen A., Karhunen J., Oja E., 2001, Independent
Component Analysis. John Wiley and Sons, New York

Jenet F. A., Anderson S. B., Kaspi V. M., Prince T. A,
Unwin S. C., 1998, ApJ, 498, 365

Jenet F. A., Anderson S. B., Prince T. A., 2001, ApJ, 546,
394



16 S. Ostowski et al.

Jenet F. A., Hobbs G. B., van Straten W., Manchester
R. N., Bailes M., Verbiest J. P. W., Edwards R. T., Hotan
A. W., Sarkissian J. M., Ord S. M., 2006, ApJ, 653, 1571

Johnson R., 1998, Applied multivariate statistical analysis,
4th edn. Prentice Hall, Upper Saddle River, NJ [u.a.]

Johnston S., Lorimer D. R., Harrison P. A., Bailes M., Lyne
A. G., Bell J. F., Kaspi V. M., Manchester R. N., D’Amico
N., Nicastro L., 1993, Nature, 361, 613

Karastergiou A., Roberts S. J., Johnston S., Lee H., Wel-
tevrede P., Kramer M., 2011, MNRAS, 415, 251

Karastergiou A., von Hoensbroech A., Kramer M., Lorimer
D. R., Lyne A. G., Doroshenko O., Jessner A., Jordan C.,
Wielebinski R., 2001, A&A, 379, 270

Kaspi V. M., Taylor J. H., Ryba M. F., 1994, ApJ, 428,
713

Kinkhabwala A., Thorsett S. E., 2000, ApJ, 535, 365

Kramer M., 1998, ApJ, 509, 856

Kramer M., Backer D. C., Cordes J. M., Lazio T. J. W.,
Stappers B. W., Johnston S., 2004, New Astronomy Re-
views, 48, 993

Kramer M., Lyne A. G., O’Brien J. T., Jordan C. A.,
Lorimer D. R., 2006a, Science, 312, 549

Kramer M., Stairs I. H., Manchester R. N., McLaughlin
M. A., Lyne A. G., Ferdman R. D., Burgay M., Lorimer
D. R., Possenti A., D’Amico N., Sarkissian J. M., Hobbs
G. B., Reynolds J. E., Freire P. C. C.; Camilo F., 2006b,
Science, 314, 97

Kramer M., Xilouris K. M., Camilo F., Nice D. J., Backer
D. C., Lange C., Lorimer D. R., Doroshenko O., Sallmen
S., 1999, ApJ, 520, 324

Kulkarni S. R., 1989, AJ, 98, 1112

Liu K., Verbiest J. P. W., Kramer M., Stappers B. W., van
Straten W., Cordes J. M., 2011, MNRAS, 1442

Lyne A., Hobbs G., Kramer M., Stairs I., Stappers B., 2010,
Science, 329, 408

Manchester R. N., Lyne A. G., Camilo F., Bell J. F., Kaspi
V. M., D’Amico N., McKay N. P. F., Crawford F., Stairs
I. H., Possenti A., Kramer M., Sheppard D. C., 2001, MN-
RAS, 328, 17

Manchester R. N., Taylor J. H., 1974, ApJ Lett, 191, L63+

Manchester R. N., Taylor J. H., Huguenin G. R., 1975,
AplJ, 196, 83

Matsakis D. N., Taylor J. H., Eubanks T. M., 1997, A&A,
326, 924

Navarro J., Manchester R. N., Sandhu J. S., Kulkarni S. R.,
Bailes M., 1997, ApJ, 486, 1019

Petit G., Tavella P., 1996, A&A, 308, 290

Rathnasree N., Rankin J. M., 1995, ApJ, 452, 814

Rickett B. J., 1975, ApJ, 197, 185

Rodin A. E.; 2008, MNRAS, 387, 1583

Sallmen S., Backer D. C., Hankins T. H., Moffett D., Lund-
gren S., 1999, ApJ, 517, 460

Sandhu J. S., Bailes M., Manchester R. N., Navarro J.,
Kulkarni S. R., Anderson S. B., 1997, ApJ Lett, 478, 195

Shannon R. M., Cordes J. M., 2010, ApJ, 725, 1607

Smits J. M., Stappers B. W., Macquart J.-P., Ramachan-
dran R., Kuijpers J., 2003, A&A, 405, 795

Staelin D. H., Reifenstein III E. C., 1968, Science, 162, 1481

Stairs I. H., Thorsett S. E., Taylor J. H., Arzoumanian Z.,
2000, in Astronomical Society of the Pacific Conference
Series, Vol. 202, TAU Collog. 177: Pulsar Astronomy -
2000 and Beyond, M. Kramer, N. Wex, & R. Wielebinski,

ed., p. 121

Staveley-Smith L., Wilson W. E., Bird T. S., Disney M. J.,
Ekers R. D., Freeman K. C., Haynes R. F., Sinclair M. W.,
Vaile R. A., Webster R. L., Wright A. E., 1996, Publ.
Astron. Soc. Aust., 13, 243

Taylor J. H., 1992, Royal Society of London Philosophical
Transactions Series A, 341, 117

Taylor J. H., Manchester R. N., Huguenin G. R., 1975,
AplJ, 195, 513

Taylor J. H., Weisberg J. M., 1982, ApJ, 253, 908

van Haasteren R., Levin Y., Janssen G. H., Lazaridis K.,
Kramer M., Stappers B. W., Desvignes G., Purver M. B.,
Lyne A. G., Ferdman R. D., Jessner A., Cognard I.,
Theureau G., D’Amico N., Possenti A., Burgay M., Coro-
ngiu A., Hessels J. W. T., Smits R., Verbiest J. P. W.,
2011, MNRAS, 414, 3117

van Straten W., 2004, ApJS, 152, 129

—, 2006, ApJ, 642, 1004

—, 2009, ApJ, 694, 1413

van Straten W., Bailes M., 2011, Publ. Astron. Soc. Aust.,
28, 1

van Straten W., Bailes M., Britton M., Kulkarni S. R.,
Anderson S. B., Manchester R. N., Sarkissian J., 2001,
Nature, 412, 158

van Straten W., Manchester R. N., Johnston S., Reynolds
J. E.; 2010, Publ. Astron. Soc. Aust., 27, 104

Verbiest J. P. W., Bailes M., van Straten W., Hobbs
G. B., Edwards R. T., Manchester R. N., Bhat N. D. R.,
Sarkissian J. M., Jacoby B. A., Kulkarni S. R., 2008, ApJ,
679, 675

Vivekanand M., 2001, MNRAS, 326, L33

Vivekanand M., Ables J. G., McConnell D., 1998, ApJ, 501,
823

Wang N., Manchester R. N., Johnston S., 2007, MNRAS,
377, 1383

Weisberg J. M., Romani R. W., Taylor J. H., 1989, ApJ,
347, 1030

Yan W. M., Manchester R. N., van Straten W., Reynolds
J. E., Hobbs G., Wang N., Bailes M., Bhat N. D. R,,
Burke-Spolaor S., Champion D. J., Coles W. A., Hotan
A. W., Khoo J., Oslowski S., Sarkissian J. M., Verbiest
J. P. W., Yardley D. R. B., 2011, MNRAS, 414, 2087

Yardley D. R. B., Hobbs G. B., Jenet F. A., Verbiest
J. P. W., Wen Z. L., Manchester R. N., Coles W. A.,
van Straten W., Bailes M., Bhat N. D. R., Burke-Spolaor
S., Champion D. J., Hotan A. W., Sarkissian J. M., 2010,
MNRAS, 407, 669



	1 Introduction
	2 Stochastic Wideband Impulse Modulated Self-Noise
	3 Observations and data processing
	4 Method
	4.1 Correcting the timing residuals: multiple regression
	4.2 Simulations

	5 Results
	6 Discussion
	6.1 Discussion of the method
	6.2 Application to PSR J0437-4715

	7 Conclusion

