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Pulsars are famed for their rotational clock-like stability and their highly-

repeatable pulse shapes. However, it has long been known that there are unex-

plained deviations (often termed ”timing noise”) from the rate at which we

predict these clocks should run. We show that timing behaviour often re-

sults from typically two different spin-down rates. Pulsars switch abruptly

between these states, often quasi-periodically, leading to the observed spin-

down patterns. We show that for six pulsars the timing noise is correlated

with changes in the pulse shape. Many pulsar phenomena including mode-

changing, nulling, intermittency, pulse shape variability and timing noise are

therefore linked and caused by changes in the pulsar’s magnetosphere. We

consider the possibility that high-precision monitoring of pulse profiles could

lead to the formation of highly-stable pulsar clocks.
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Introduction

Neutron stars form in the supernova collapse of the cores of exhausted massive stars and are

comprised of some of the densest and most extreme matter in the observable Universe. Pulsars

are rapidly-rotating, highly-magnetized neutron stars. As they rotate, intense beams of electro-

magnetic radiation may sweep across the Earth, resulting inpulses which are often observed

with radio telescopes, enabling their rotation to be studied with high precision.

Pulsars are amongst the most stable rotators known in the Universe. Over long time spans

the fastest spinning pulsars known as “millisecond pulsars” even rival the stability of atomic

clocks (1). Although they slow down gradually because of the conversion of rotational energy

into highly energetic particles and electromagnetic waves, a simple spin-down model using

only the pulsar’s rotational frequencyν and its first time derivativėν is often sufficient to reveal

timing properties that, for instance, allow high-precision tests of the theory of general relativity

(2) and may also allow direct detection of gravitational waves(3–5). However, not all pulsars

seem to be perfectly stable clocks.

The pulsar timing technique (6, 7) is used to compare pulse arrival times at an observatory

with times predicted from a spin-down model. Many pulsars show a phenomenon known as

“timing noise” where seemingly quasi-random walks in the rotational parameters are observed.

The largest study of such kind (2) recently presented the rotation properties of 366 pulsars, mea-

sured mainly using the Lovell Telescope at Jodrell Bank. This long-term monitoring of pulsars

over 40 years made it possible to study phenomena in many pulsars over decadal timescales. It

was shown that the majority of the pulsars were found to have significant irregularities in their

rotation rate. The differences between the observed and predicted times, known as the pulsar

“timing residuals”, can be less than a few milliseconds overmore than30 yr, but in other cases

timing residuals can be as large as many seconds. In contrastto the standard models held for
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the past∼40 yr, it was found that these timing irregularities are often quasi-periodic with long

(∼1-10 year) time scales. Here we present a description of these irregularities and how they

are related to changes in pulse shape, linking many peculiarand unexplained time-dependent

phenomena observed in pulsars.

Pulsar Time Scales

Many of the properties of pulsars are not perfectly stable and they vary over a wide range of

timescales. Rotational periods range from milliseconds toseconds. The structure and brightness

of individual pulses are observed to vary significantly, butthe average of many hundreds of indi-

vidual pulses (∼minutes) is usually stable, leading to a characteristic profile that is often unique

to a pulsar. On time scales of seconds to hours, some pulsars are observed to exhibit either

“nulling” events, during which the pulse emission switches“off”, or “mode changing” events

where the observed pulse profile changes abruptly between two (sometimes three) well-defined

shapes. On longer time scales, PSR B1931+24 has recently been described as an “intermittent

pulsar” which relates to the fact that it undergoes extreme nulling events (9), displaying quasi-

periodic behaviour in which the pulsar acts as a normal pulsar for typically five to ten days, be-

fore switching “off”, being undetectable for∼25 days and then abruptly switching “on” again.

On even longer time scales, stable harmonically-related periodicities of∼250, 500 and 1000 d,

have been reported in the rotation rate and pulse shape of PSRB1828−11. The periodicities

have generally been interpreted as being caused by PSR B1828−11 freely-precessing (1), even

though it had been argued that this was not possible in the presence of the superfluid component

believed to exist inside neutron stars (11).
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Discrete pulsar spin-down states

The patterns observed in the timing residuals of a sample of 10 pulsars (Fig. 1) are typical of

the sample presented in (2) and highlight the main results of that paper that 1) the residuals

are dominated by quasi-periodic structures and 2) the residuals are generally asymmetric, in

that the radii of curvature of local maxima are often consistently different to those of local

minima. Clear examples are seen in PSRs B0950+08, B1642−03, B1818−04, B1826−17

and B1828−11. In several cases, notably PSRs B0919+06 and B1929+20, relatively rapid

oscillations lie on lower-frequency structures.

Structures in the timing residuals have been widely discussed in the literature. Sudden

increases in the pulsar’s rotation rate are known as “glitches” and are explained by the sudden

unpinning of superfluid vortices in the interior of the neutron star (12). An apparently related

phenomenon known as “slow glitches” has been described (13, 14), characterised by a slow

permanent increase in rotation rate but no substantial change in the slow-down rate and also

identified with the interior of the neutron star. The low-frequency structures seen over short

data spans were thought to represent either random walks in the pulse frequency and/or its

derivatives (15,16) arising from instabilities within the neutron star superfluid interior, multiple

micro-glitches (17), free precession of the neutron star (1), asteroid belts (18), magnetospheric

effects (19), interstellar or interplanetary medium effects (20) or accretion of material onto the

pulsar’s surface (21). Timing residuals for the youngest pulsars in (2) are dominated by the

recovery from glitch events, sometimes having occurred prior to the start of observing. In

general, for the remaining pulsars it was shown that, with long data spans, the low-frequency

structures are no longer dominant, but are now understood asrestricted pieces of much longer-

term oscillatory structures, often with asymmetric maximaand minima. Any model explaining

timing noise therefore needs to explain these commonly-occurring features.
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The analysis of PSR B1931+24 (9) showed that the pulsar spin-down rate switched by

∼50% between the “on” and “off” states, with the pulsar spinning down faster when the radio

signal was detectable. The quasi-periodic nature of the time between state changes and the

difference in time spent in each state leads naturally to oscillatory, asymmetric timing residuals

(Fig. 6). The existence of two discrete spin-down rates in PSR B1931+24 and the similarities

between such timing residuals and those shown in Fig. 1 suggests that a similar model could be

also applied to the timing noise seen in all pulsars.

The variation in the spin-down ratėν(t) for 17 pulsars demonstrates that the observed struc-

tures in the timing residuals arise from a pulsar’sν̇ moving between a small number of values

and frequently in an oscillatory manner (Fig. 2). In some cases more complex structure is seen.

For instance, in PSR B1642−03 we observe peaks iṅν followed by a sudden change to a more

negativeν̇ value before a slow gradual rise. In PSR B1828−11, in addition to the oscillatory

structure, we also observe a long-term gradual linear change in ν̇ across the data span. We con-

centrate on the dominant features of this figure: the value ofν̇ changes between a few (typically

two) well-defined values, often in a quasi-periodic manner.

In order to quantify the behaviour, we measured the peak-to-peak values oḟν for each pulsar

(Table 1). Additionally, for each of the time sequences in Fig. 2, we have performed Lomb-

Scargle (22) and wavelet (23) spectral analyses. As expected, some of the resultant spectra

(Figs. 7 and 8) show narrow, highly-periodic features, while others show broader, less well-

defined peaks.

Pulse shape variations

Following the implications of the study of PSR B1931+24 thatchanges within the magneto-

sphere are responsible for variations in both the spin-downrate and the emission process (9),

we have sought changes in the pulse shapes of those pulsars which have shown the greatest frac-
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tional changes in spin-down rate in the timing noise study. Six pulsars show changes in pulse

shape which are clearly visible (Fig. 3). From inspection ofthe profiles in Fig. 3, for each pulsar

we selected the simplest “shape parameter” which would discriminate between the two extreme

pulse-shape states, such as W10, W50 or W75, the full widths at 10%, 50% or 75%, or Weq, the

equivalent width (see the Supporting Online Material for details on how these were determined

and their implications for the timing residuals). For six pulsars, the observed changes inν̇ are

indeed directly related to changes in pulse shape (Fig. 4). In most cases, the two quantities

clearly track one another and there is strong evidence for either correlation or anti-correlation

in all six cases (Fig. 9). It is not clear whether the imperfect correlations are intrinsic or arise

from the sparse sampling of the time series or measurement errors.

Some of the pulse profiles suggest that increased|ν̇| is associated with increased ampli-

tude of the central (often described as “core”) emission relative to the surrounding (or “conal”)

emission (Fig. 3). PSR B1822−09 exhibits a main pulse, a precursor and an interpulse (24,25).

For the high|ν̇| state the precursor is weak and the interpulse is strong, thereverse occurring

for the smaller|ν̇| state. Clearly, some changes inν̇ are associated with large profile changes

(e.g. PSRs J2043+2740 and B1822−09) while smaller profile changes are also observable if

sufficiently high-quality data are available (e.g. PSR B1540−06).

While the main impression given by the traces in Fig. 4 is thatthey are bounded by two

extreme levels, there are substantial, and often repeated,subtle changes which are synchronised

in both shape parameter andν̇. The shape parameters for the observations of PSRs B1822−09,

B1828−11 and B2035+36 imply that they spend most of the time in just one extreme state

or the other. This is essentially the phenomenon of mode-changing, which has been known

since shortly after the discovery of pulsars (24, 26–28). In those papers, pulsars are reported

to show stable profiles, but suddenly switch to another stable mode for times ranging from

minutes to hours. However, the time-averaged values of the shape parameters depend upon the
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mix of the two states over the averaging period and that varies with time, causing the slower

changes in the shape-parameter curves and the spin-down rate curves.∼2500 d of detail in the

shape parameters and spin-down rates of PSRs B1822−09 and B1828−11 (Fig. 5) illustrate

how a slowly-changing mix of the two states is reflected in theform of the smoothed shape

curves. In PSR B1822−09, the events centered on MJDs 51100 and 52050 are the sites of

slow glitches (13,14) which we confirm are not a unique phenomenon (2), but arise from short

periods of time spent predominantly in a small-|ν̇|, large-precursor mode.

Discussion

The large number of pulsars observed over many years in the Jodrell Bank data archive has

allowed the identification of a substantial number of pulsars that have largėν changes, some of

which also have detectable, correlated pulse-shape changes. This correlation indicates that the

causes of these phenomena are linked and are magnetosphericin origin. The physical mecha-

nism for this link is likely to be that suggested to explain the relationship between spin-down rate

and radio emission in B1931+24, namely a change in magnetospheric particle current flow (9).

An enhanced flow of charged particles causes an increase in the braking torque on the neutron

star and also in the emission radio waves.

The link between the spin-down rate and radio-emission properties has not been established

previously, mainly because the timescales of the long-established phenomena of mode-changing

and pulse-nulling were much shorter than the time required to measure any change inν̇. The

extended high-quality monitoring of many pulsars has now revealed long-term manifestations

of these phenomena and allowed their unambiguous association with the spin-down rates of

pulsars, seen as timing noise. Pulsars can spend long periods of time in one magnetospheric

state or another or in some cases switch rapidly back and forth between states, the fractions

of time spent in the two states often varying with time. It haslong been suspected that mode-
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changing and nulling are closely related [e.g. (29, 30)]. The intermittent pulsar B1931+24 has

the largest fractional change inν̇ in Table 1 and, as it completely disappears, also has the largest

apparent change in pulse shape. Mode-changing and nulling therefore probably differ only

in the magnitude of the changes in the magnetospheric current flows. There is a close linear

relationship between∆ν̇ and the spin-down rate|ν̇| (Fig. 10), indicating that the value oḟν

switches by about 1% of the mean value, independent of its magnitude.

We must also emphasise that: (1) the fast change between the states indicates that the

magnetospheric state changes on a fast time scale, but can then be stable for many months

or years before undergoing another fast change, (2) whatever the cause of the state-switching,

for most pulsars, it is not driven by a highly periodic (high-Q) oscillation and (3) increased

|ν̇| is associated with increased amplitude of the core emissionrelative to conal emission. The

fast state-changes seem to rule out free precession as the origin of the oscillatory behaviour.

PSR B1828−11 was considered unique in that it was the only pulsar that showed clear evi-

dence for free precession (1). Our model indicates that this pulsar is not unique and exhibits the

same state-changing phenomenon shown here for other pulsars.

If we could monitor a pulsar continuously, then its magnetospheric state at any given time

could be determined from the pulse shape. The state gives a measure of the spin-down rate,

allowing the timing noise to be removed (an example is given in Fig. 6). The most stable mil-

lisecond pulsars are being regularly observed from many observatories world-wide in the hope

of making the first direct detection of gravitational waves .The first-discovered millisecond

pulsar, PSR B1937+21, can be timed with high precision (of∼ 100ns) over short data spans,

but low-frequency timing irregularities dominate the timing residuals over data spanning more

than∼ 3 yr (32) making this pulsar potentially unusable for gravitational wave detection ex-

periments. However, if magnetospheric state switching is responsible and can be applied to

millisecond pulsars, then the timing irregularities can bemodelled and removed, raising the
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possibility of producing an essentially stable clock.
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Table 1: Measured parameters of 17 pulsars presented in Fig.2, as well as PSR B1931+24
which is also discussed in the text. We give the pulsar names,rotational frequencyν and the
first derivativeν̇, followed by the peak-to-peak fractional amplitude∆ν̇/ν̇ of the variation seen
in Fig. 2. The pulsars are given in order of decreasing value of this quantity. We also present
the fluctuation frequencies F of the peaks of the Lomb-Scargle power spectra (Fig. 7), with the
widths of the peaks or group of peaks given in parenthesis in units of the last quoted digit.

Pulsar Jname ν ν̇ ∆ν̇/ν̇ F Comment
name (Hz) (Hz s−15) (%) (yr−1)

B1931+24a J1933+2421 1.229 −12.25 44.90 13.1(7) Intermittent pulsar
B2035+36 J2037+3621 1.616 −12.05 13.28 0.02(2) 28% change in Weq
B1903+07 J1905+0709 1.543 −11.76 6.80 0.36(13)
J2043+2740 J2043+2740 10.40−135.36 5.91 0.11(5) 100% change in W50

B1822−09 J1825−0935 1.300 −88.31 3.28 0.40(7) 100% change in Apc/Amp

B1642−03 J1645−0317 2.579 −11.84 2.53 0.26(7)
B1839+09 J1841+0912 2.622 −7.50 2.00 1.00(15)
B1540−06 J1543−0620 1.410 −1.75 1.71 0.24(2) 12% change in W10
B2148+63 J2149+6329 2.631 −1.18 1.69 0.33(7)
B1818−04 J1820−0427 1.672 −17.70 0.85 0.11(1)
B0950+08 J0953+0755 3.952 −3.59 0.84 0.07(3)
B1714−34 J1717−3425 1.524 −22.75 0.79 0.26(4)
B1907+00 J1909+0007 0.983 −5.33 0.75 0.15(2)
B1828−11 J1830−1059 2.469 −365.68 0.71 0.73(2)b 100% change in W10
B1826−17 J1829−1751 3.256 −58.85 0.68 0.33(2)
B0919+06 J0922+0638 2.322 −73.96 0.68 0.62(4)
B0740−28 J0742−2822 5.996 −604.36 0.66 2.70(20) 20% change in W75

B1929+20 J1932+2020 3.728 −58.64 0.31 0.59(2)

aData from reference (9).
bNote the presence of a second harmonic at F=1.47(2) yr−1 seen in Fig. 7 and discussed in (1).
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Fig. 1. Pulsar timing residuals relative to a simple spin-down model of the pulse frequency

and its first derivative. For PSRs B0919−06, B1540−06 and B1828−11 we have also included

the frequency second derivative in the model. For each pulsar, the peak-to-peak range in resid-

ual is given, and the vertical scale has been adjusted to givethe same peak-to-peak deflection

in the diagram. We use data updated from those presented in (2) and also include data for

PSR J2043+2740. The residuals were obtained using theTEMPO2 software package (33).

Fig. 2. Variations in the spin-down ratėν for 17 pulsars during the past 20 years. We determined

these values by selecting small sections of data of lengthT and fitting for values ofν and ν̇,

repeating at intervals of∼T/4 through each data set. The chosen value ofT is the smallest

required to provide sufficient precision inν̇ and is given below each pulsar name.T is typically

100-400 d so that any short-time-scale variations will be smoothed out. For each pulsar, we

adjusted the vertical scale to give the same peak-to-peak amplitude and subtracted an arbitrary

vertical offset. Becausėν is negative, an increase in the rate of spin-down is represented by a

downward deflection in this diagram.

Fig. 3. The integrated profiles at 1400 MHz of six pulsars which show long-term pulse-shape

changes. For each pulsar, the two traces represent examplesof the most extreme pulse shapes

observed. The profile drawn in the thick line corresponds to the largest rate of spin-down|ν̇|.

The profiles are scaled so that the peak flux density is approximately the same. PSR B1822−09

has an interpulse which is displayed, shifted by half the pulse period, in the second trace below

the main pulse.

Fig. 4. The average value of pulse shape parameter and spin-down rate ν̇ measured for six

pulsars. The lower trace in each panel (right-hand scale) shows the same values ofν̇ given in

Fig. 2, while the upper trace gives a measure of the pulse shape, with the scale given to the left.

W10, W50 and W75 are the full widths of the pulse profile at 10%, 50% and 75% of the peak

pulse amplitude respectively, Weq is the pulse equivalent width, the ratio of the area under the
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pulse to the peak pulse amplitude, and Apc/Amp is the ratio of the amplitudes of the precursor

and main pulse. The time over which a shape parameter is averaged is the same as the timeT

given in Fig. 2 for the fitting ofν̇. The uncertainty on a shape parameter is derived from the

standard deviation of the individual values used to determine the average.

Fig. 5. The variations in pulse shape parameters for PSR B1822−09 (a-c) and PSR B1828−11

(d-f). Traces a, c, d and f are taken from Fig. 4 and show the smoothed values of shape param-

eter and spin-down rate for the two pulsars, while diagrams band e show the values of shape

parameter for individual observations which are typicallybetween 6 and 18 minutes duration.

Note that for both pulsars, individual shape parameter values typically take either a high or low

value.
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Figure 3:
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Figure 4:
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Supporting Online Material

Determining pulse shape parameters

The pairs of pulse profiles in Fig. 3 of the journal paper were inspected and fitted with two

or three gaussian components, as required to provide satisfactory descriptions of the profiles.

The same components were fitted to each observed profile, and asynthetic profile produced,

from which the value of the chosen shape parameter used in Fig. 4 of the journal paper was

determined. W10, W50 and W75 are the widths measured at 10%, 50% and 75% of the pulse

peak. Weq is the equivalent width, being the area under the pulse divided by the peak amplitude,

and Apc/Amp is the ratio of the peak amplitudes of the precursor and main pulse components.

Note that this procedure has the virtue of applying a quasi-optimum filter to the data in order to

minimise the effects of high-frequency noise on the values of the parameters.

Determining times-of-arrival

We note that the times-of-arrival used to derive the timing residuals of Fig. 1 in the journal

paper were usually obtained by matching the observed pulse profiles with templates derived

from average profiles obtained over large sections of the data. Hence, for the objects in Fig. 3 of

the journal paper, the templates have intermediate shapes,and are usually not perfectly matched

to the observed profile, giving rise to possible systematic offsets in the timing residuals. The

maximum magnitudes of the offsets have been estimated by comparing the times-of-arrival

obtained by fitting the two profiles in Fig. 3 with the corresponding template. For the six objects,

the differences in the offsets were respectively 0.70, 0.05, 0.25, 0.17, 0.04, and 0.14 ms. Since

these are much smaller than the variations seen in Fig. 1 of the journal paper, we conclude that

the profile switching and use of a single template has little impact upon the structures seen in

the timing residuals. In practice, for PSR B1828−11 the procedure described in (Ref 1 of SoM)

was used and therefore the TOAs are not prone to such systematic errors.
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Observational limitations

Within the relatively small number of the pulsars in our sample which have high signal-to-

noise ratio profiles, pulse-shape variations are observed which are correlated with spin-down

rate. The results show that multiple pulse-profile and associated spin-down states that switch on

timescales of weeks to years is a common phenomenon seen in many pulsars. We believe that

it is possible that all pulsars which display timing noise may show the same correlated pulse-

shape behaviour, although it is so far unobserved in most pulsars, because of a combination

of modest profile changes, poor signal-to-noise ratio and often relatively-short available data

spans. The profile changes may be small, for instance, if changes in the pulsar emission beam

happen to be small in that part of the beam which crosses the line-of-sight to the Earth.

Simulations of timing residuals (Fig. 6)

We have calculated some simulations of a two-state spin-down model for pulsar timing noise in

which only two parameters determine the form of the simulations, namely the ratio R of time

spent in high and low spin-down states, and the rms fractional dither D in the switching period.

In detail, simulated values oḟν were determined for a regular time sampling.ν̇ switched be-

tween two modeṡν1 andν̇2, spending a time t1 in the first mode and t2 in the second mode (typi-

cally t1 and t2 are a few hundred days). The ratio of t1 and t2 equals R. For simulations involving

dithering the timescales, t1 and t2 are slightly modified by adding a Gaussian random deviate

with an rms of Dt1 and Dt2 respectively. The resultinġν values are numerically integrated twice

to produce pulse phase, followed by appropriate sampling and a quadratic polynomial removed

to form the resulting simulated timing residuals. Note how dither in the switching period can

give rise to low-frequency structure in the residuals (Fig.6c).
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Figure 6: Simulations of timing residuals. a)-d) Simulations of a two-state spin-down model for
pulsar timing noise in which only two parameters determine the form of the simulations, namely
the ratio R of time spent in high and low spin-down states, andthe rms fractional dither D in the
switching period (See supporting text). Note how dither in the switching period can give rise
to low-frequency structure in the residuals. e) simulated timing residuals for PSR B1828−11
in which the spin-down state is determined purely from the observed pulse shape parameter f)
observed timing residuals for PSR B1828−11 from a simple spin-down model, which shows
most of the features predicted by e), and g) the difference between the observed and simulated
timing residuals. In spite of the severe undersampling of the shape parameter due to telescope
availability (< 1% of the time), this demonstrates how it might be possible to “correct” the
times-of-arrival for spin-state variations indicated by the pulse shape.
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Figure 7: Lomb-Scargle spectra of the spin-down ratesν̇ presented in Fig. 2 of the journal
paper for 17 pulsars. The peaks of all the spectra have been normalised to the same amplitude.
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Figure 8: a) Wavelet spectra for pulsars B0740−28 and B0919+06 (top row), B0950+08 and
B1540−06 (middle row) and B1642−03 and B1714−34 (bottom row). The frequency ranges
shown cover the periodicities suggested in Fig. 7. The wavelet Z-statistic is computed as a
function of both time and frequency. The wavelet ”window” can be specified by a ”decay con-
stant”,c, that defines the number of cycles of a given frequencyf expected within the window.
Values between 0.001 and 0.01 were chosen in an attempt to obtain the best compromise be-
tween frequency and time resolution, given the data in Fig. 2. The results agree well with the
periodicities derived from the Lomb-Scargle analysis but demonstrate that for some sources the
effective frequencies are varying or not always present.6



Figure 8: b) Wavelet spectra for pulsars B1818−04 and B1822−09 (top row), B1826−17 and
B1828−11 (middle row) and B1839+09 and B1903+07 (bottom row).
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Figure 8: c) Wavelet spectra for pulsars B1907+00 and B1929+20 (top row), B2035+36 and
J2043+2740 (middle row) and B2148+63 (bottom row).
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Figure 9: Cross-correlation functions between the averagevalues of pulse shape parameters
and the spin-down rateṡν shown in Fig. 4 of the journal paper for six pulsars. Note thatin all
cases, the magnitude of correlation coefficient always peaks close to zero lag.
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Figure 10: The dependence of the magnitude of the switching in ν̇ upon the magnitude of
the average spin-down rate|ν̇| for the 17 pulsars in Table 1 excepting PSR B1931+24 (large
symbols) and another 51 pulsars which were studied in (Ref 2 of SoM) (small symbols). There
is an excellent correlation between the logarithm of the variables with a correlation coefficient
of 0.80. The solid line has a slope of unity and the dashed lineis the best-fitting straight line,
which has a slope of 0.84±0.08.
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