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Outline

• Physical model

• Signal model

• Bayesian methods

Arzoumanian et al. (2018)



Contributions to Pulsar Arrival Times
• Light travels 30cm in 1 ns

• Pulsar spindown

• Intrinsic variation in shape  and/or phase of emitted 
pulse

• Reflex motion from companions.

• Pulsar position, proper motion, distance 

• Stochastic spindown variations

• Gravitational Waves

• Warm electrons in the ISM

• Solar system

Pulsar

Earth



Power spectral estimation in one slide
• Oftentimes signals are easier expressed in the “frequency 

domain” rather than the time domain
• Sine wave can be expressed by three numbers:   

• Amplitude
• Frequency 
• Phase 

• Fourier transform:  
• Projection of time series onto set of sinusoids
• Fast Fourier transform (FFT): efficient algorithm of calculating FT

• Power spectrum
• Square of Fourier transform
• Useful if don’t care about phase of signals

• We’ll be using frequencies in three different contexts
• Frequency = fluctuation frequency
• Frequency  = radio frequency
• Frequency = gravitational wave frequency 

Time Series Fourier transform



Deterministic vs. Stochastic Process
• Deterministic system: 

• If initial state is known exactly, future state can be predicted
• E.g. Pulsar, white dwarf system

• Chaotic system (type of deterministic system)
• If deterministic system behavior is highly sensitive to initial 

condition, evolution will show apparent randomness 
• Example: Hyperion

• Stochastic system:  
• System evolution depends on random variables 
• Example CMB, Gravitational Wave Background

• A large portion of the rest of the talk will be devoted to 
identifying, assessing, and characterizing stochastic processes.



Example: Deterministic contributions
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Timing residuals: Difference between maximum-likelihood model and residuals

Need to refer arrival times to non-inertial frame:  Solar System Barycentre.

Timing parallax 
(curvature of radio 
waves as it passes 
solar system)

Best model



Example: Instrumental offsets
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03/05/10 PDFB3 and PDFB4 firmware updated at UT0415 (MJD 55319.18) to remove delays, i.e. to make 

time-stamp refer to time of signal arrival at digitiser input. In case of PDFB4, the PTU was also changed to 

remove the two-bin delay. (V6,V3)



What about this?

MSP PSR B1937+21



Classes of stochastic processes
• White Noise (WN)

• Uncorrelated
• Flat power spectrum

• Red Noise (RN)
• Correlated noise
• Wide-sense stationary
• Random walks
• �Red Power spectrum� (more power at 

lower frequency)

• Band limited noise
• Red power spectrum with cut-offs
• Excess power at certain frequencies

White Noise
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White noise

• Noise that is uncorrelated on TOA-
TOA time scales

• Radiometer noise

• Pulse-shape  variations (“jitter”)

• Esoteric ISM effects?
• Instrumental effects?
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Pulse-shape variations in PSR 
J1713+0747 (Arecibo, Shannon & 
Cordes 2012) 



Timing Error from Pulse-Phase Jitter

• fϕ = PDF of phase variation
• a(ϕ) = individual pulse shape
• Ni = number of independent pulses summed
• mI = intensity modulation index ≈ 1
• fJ = fraction jitter parameter = ϕrms / W ≈ 1

23 June 2010 Jim Cordes       IPTA2010      Leiden 11

Gaussian shaped pulse:

N6 = Ni / 106



Red noise

Why don�t we use normal pulsars for PTA work?
1. Pulse Shape Variations (jitter noise)
2. Timing Noise

Timing noise in an individual pulsar can have 
very similar shape to gravitational waves



22 years of timing the Vela pulsar

Astrophysical applications of pulsar 
timing arrays |  Ryan Shannon 13 |
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What is causing the systematic 
variations in residual TOAs?

For these pulsars, the residuals are mostly caused by spin noise in the 
pulsar:
Torque fluctuations crust quakes superfluid-crust interactions 
Other pulsars: excess residuals are caused by orbital motion (planets, WD, 
NS), ISM variations, GWBs



Red noise
• Most young pulsars show red spin noise

• Rotation instabilities?
• Magnetospheric torque changes?
• Open question:  is this a generic property of MSPs 

too?
• Can have similar spectral properties to GWB

• Solution:  need to (at least) model the presence of red 
noise in datasets

• Triage bad pulsars

15 |

2003 2014

MSP PSR B1937+21

PSR J1024-0719

PSR J1909-3744

Wide companion
Kaplan et al (2015),
Bassa et al. (2015).



• Example of quasiperiodic processes (Lyne et al 2010)
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α = -1.4; β = 1.1; γ = 2.0

Timing noise across 
the pulsar population
Examined every report of TN in the 
literature 1980-2010

Blue:  Magnetars
Black: Canonical (Normal) Pulsars 
(CPs)
Red:  MSPs
Open symbols:  upper limits
Closed symbols: detections

Implications:  Spin noise will be 
present in MSPs if observed
1.Over longer periods of time
2.With higher timing precision



Spin noise is present in MSPs

Noise  has time variability similar to that expected 
from GWB, making filtering difficult/impossible.

For given spin properties, range of strengths of timing 
noise. 

Going to need to time a larger number of pulsars and 
then discard the ones that show timing noise.

Plausibly 20 ns (rms) of timing noise 
over 5 years for typical MSP.
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• Low mass circumpulsar system (total mass ~ 0.05 Earth masses)

• 10 -200 objects:  Can�t resolve periodicities of individual 
components. 

Data tools used
• Simulations of reflex motion
• Remove timing model
• Comparing simulated maximum entropy power spectra to best fit 

power spectra.
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Asteroid belt Interpretation to Timing Noise in B1937+21
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Red noise from the interstellar medium

Largest red signal in data set:  Variations in 
dispersion measure (DM).
Proportional to λ2.

Need to remove red signal associated with DM 
variations without removing red signal associated 
with GWB

Include model of λ-independent in DM correction 
algorithm (Shannon 2011, Keith et al. 2013, Lee 
et al. 2014, Lentati et al. 2014)



Multi-path propagation

• Multi-path propagation causes broadening of pulse signal.
• Proportional to λ2 to λ6.4

• Broadening is variable with time

• Strongest for distant pulsars observed at low frequencies

• Solution:
• Observe at higher radio frequency
• Explore mitigation methods like cyclic spectroscopy 

(Demorest 2012)
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Biases in red-noise estimates
Assumption: observations contain only (instrumental) white noise and DM 
variations

Only observe at high frequency

Correct for DM

Correct for DM + Scattering

Correct for DM + Scattering (2)

Bad
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Biases in red-noise estimates
Down-weight low frequency TOAs to account for scattering variations. 

Only observe at high frequency

Correct for DM

Correct for DM + Scattering

Correct for DM + Scattering (2)

Good



Observations of scattering noise
• PSR J1643-1224

• See IPTA Noise paper (Lentati et al. 2016)!
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Parkes residuals 
corrected for DM 
variations  and scaled to 
3.1 GHz

Blue: 10cm
Black: 20cm
Red: 50cm



Modelling noise

• White noise:
• Modification to TOA uncertainties: EFAC and EQUAD

• Red noise:  power spectrum
• Useful for wide-sense stationary processes
• Maps onto gravitational wave background
• Power law:   Pr(f) = A f-β

• In Bayesian methods A and β can be directly included in model
• More complicated models appropriate for band-limited processes

• Band noise
• System noise
• Non-stationary models 
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What’s the point of spectral estimation?

• Searching for deterministic signals:  periodic

• Stochastic signals:  described by amount of signal per 
frequency
• Useful way of expressing properties of time-correlated signals. 

• Describe power spectral density (PSD).  Integral under  
power spectral density estimator (PSDE) is defined to be 
the variance in the time series.  
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Example: Fourier Transforms

• Advantage (can do it “fast”) useful if doing a lot of computation
• Very useful for online computation

• Beware of spectral leakage.   If you measure P(f) ~ f-2 it is likely due to 
spectral leakage
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Example:  Baseband data

• Voltage data recorded as 2-bit numbers with VLBI recorder

• Convert data to intensity as a function of frequency
• Turn data into power spectra:  |FFT|2
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Dynamic and secondary spectra

Noise "Practicum"  |  Ryan Shannon 29 |

• Look at intensity as a function of frequency
• Dynamic spectrum
• Stochastic pattern

• Second FFT
• Structure is more isolated



Maximum entropy spectra estimation
• Fourier approach:   model autocorrelation function, set to zero outside 

spectral window
• Define process to have maximum entropy (fewest assumptions about 

data, no sharp edges outside of data span)

Noise "Practicum"  |  Ryan Shannon 30 |



Cholesky spectral estimation

• If you have a good guess of what the statistics of your stochastic 
signal, then you should use them as part of your fitting process

• Lomb-Scargle:  fitting sinusoids to irregularly sampled data

• Weighted Lomb Scargle:  Assume noise covariance matrix is diagonal  
(means samples are assumed to be statistically independent).

• Weighted Lomb-Scargle with red noise covariance matrix
• Cholesky spectral estimation implemented as spectralModel plugin in tempo2
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Autocorrelation and cross correlation 
functions

• Useful for measuring characteristic size (timescale etc.)  for 
stochastic process
• Covariance versus lag (time, frequency)

• Correlation length for white signal ~ sampling cadence 
(spike at zero lag)  

• Correlation length for red signal is ~ Tobs
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Identifying effects of pulse shape variations

• Make TOAs in multiple sub-bands
• Calculate cross-correlation functions of residuals TOAs
• Example:  Arecibo observations of J1713+0747 
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Simulating red noise

• Lots of ways to do it!

• Using a Fourier transform:
• Simulate complex random samples
• Multiply complex variables by bandpass
• Invert using FFT
• Issue:  need to simulate  band pass frequency 1/T to avoid  edge effect

• (FT makes assumption that signal is periodic).
• Make data Hermitian so that time series is Real

• Other methods
• Sum of oscillators (used in tempo2 and IPTA data challenge)
• Use covariance function + Cholesky decomposition  
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Summary:  physical model for timing effects

Cordes & Shannon (2010, arXiv:1010.3785)



Signal model for pulsar timing
• TOAs = timing model + white noise + red noise 

• Timing model = deterministic terms

• Red noise = (gravitational waves) + spin noise + ISM noise + …

• White noise = radiometer noise + pulse jitter + instrumental effects

• Can fit/marginalize deterministic terms without too much fuss
• Want to minimize stochastic contributions relative to GWs
• Need to incorporate stochastic contributions into Likelihood function
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Maximum-likelihood methods
• If observations are normally distributed, can calculate the probability 

(p) that the parameters agree with the data: 
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• di =  data points
• si = model at data points 
• σ = uncertainty in model

• Strategy 1:   find parameters that maximize probability (usually 
minimize –log(p)=“χ2“



Maximum-likelihood methods
• If parameters are linear, then the problem is linear, and parameters (and uncertainties) can be solved 

for using  a set of linear equations
• Convergence in single iteration of fit
• There is a unique global minimum 

• If model is non-linear it is often possible to linearize the problem about initial parameters
• Binary orbital parameters are very non-linear
• Convergence may take a few iterations if close to minimum
• Not guaranteed to find global minimum

• Downsides: 
• Difficult quantify the effect of assumptions in the uncertainties
• Minimum in χ2 not representative if PDF is misshapen
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Strategy 2:  Bayesian analysis

• Want to calculate probability of Model M with parameters X given data D

• Bayes Theorem:
p(X|D,M) = p(D|X,M)P(X|M)/P(D|M)

• Posterior probability:  P(X|D,M)  (the question you want to answer)
• Likelihood:  P(D|X,M) (How well does you data match the parameters and 

model )
• Prior:  P(X|M) (The range of expected values for the parameters)

• Usually choose flat (uniformed priors), but can also choose physical priors
• Evidence:  P(D|M)  (How well the model matches the data)
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• Instead of finding the most 
likely set of parameters we 
consider parameters (or sets of 
parameters) of interest and 
marginalize over the rest

• Complete picture for the 
probability distribution for a 
given parameter
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Strategy 2:  Bayesian analysis



Calculating p(X|D,M)
• Challenge:  for parameter estimation, want to marginalize over 

parameters that you don’t care about (or care about independently)

• For Gaussian distributions with flat priors this can be calculated 
analytically

• Need creative (numerical) way to sample p(X|D,M)  for complicated 
PDFs. 

• Various algorithms:
• Markov-chain Monte Carlo (MCMC), Nested Sampling, Polychord, etc.
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Marginalization 

• Key to Bayesian analysis:  Integrate 
over ‘nuisance’ parameters, 
characterise the parameters that you 
are interested in 

• Things you don’t care about but that 
affect the answer you want

• Consider 2-dimensional problem –
• Probability density for parameters
• A and B.
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• Can marginalise numerically after sampling

Integrate over A to get the probability of B

Marginalization 



Can marginalize numerically after sampling
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Integrate over B to get the probability of A

• Can marginalise numerically after sampling

Can also marginalise analytically

! #⃗ $) = ∫ ! #⃗ (, $ ! ( #(



The evidence
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Evidence is the integral of the likelihood 
function over the prior

Used to evaluate the relative probabilities 
of different hypotheses

Again, difficult to calculate for large 
parameter spaces



Evidence comparison

• Require increase in 
evidence to warrant 
more complicated model
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Advantages of Bayesian methods

• Answers a different, but fundamental question

• Incorporate prior information and all uncertainty

• Complete model

• Model selection through evidence

• Downsides:
• Computation cost (but this is changing, and changing quickly)
• Think beyond your posterior distributions
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Sampling
Total dimensionality ~ hundreds
Weeks of compute time

Difficult problem!

We want to calculate P(X |D, M)

Non-trivial for non-trivial problems

Have to sample from posterior



Random walk Metropolis Hastings
Simplest sampler you can imagine 

~ 6 lines of Code:

Choose parameter starting point !"
Calculate likelihood L0
Do:
Take a step to !#
Calculate likelihood L1
Draw a random uniform number U from 0..1
If L1/L0 > U accept the new point, otherwise reject.
Repeat.



Random walk Metropolis Hastings
Has its problems: Convergence rate depends on step size

Just right Too small Too bigStep Size:



Random walk Metropolis Hastings
But will get there eventually

Just right Too small Too largeStep Size:



Random walk Metropolis Hastings
Very poor for multi modal problems:

If step size allows jumps between modes,
it will be too big within each mode.

If step size small enough to explore individual modes,
it wont step between them.



Nested Sampling (Skilling 2004)
Solves a lot of these problems

Draw N points Uniformly from the prior
Lowest likelihood point = L0

Draw a new point with likelihood Li
If Li > L0 replace point with the new point

Otherwise try again



Nested Sampling (Skilling 2004)
The Challenge:
Draw new points from within the hard boundary L > L0
Mukherjee (2005): Use ellipses to define the boundary

Still not great for multi-modal problems



MultiNest (Feroz & Hobson 2008)
At each iteration:
Construct optimal multi-ellipsoidal bound
Pick ellipse at random to sample new point



MultiNest (Feroz & Hobson 2008)
Works great for multi-modal problems:



Polychord (Handley & Hobson 2015)
Successor to MultiNest.

Still uses nested sampling.

Works in much higher dimensions (up to ~ 150)



Tests for Gaussianity

• Why bother?  
• Departures would signify that there is a breakdown of the assumptions 

about contributions to the measurements
• Will bias your parameter estimation/posterior distribution
• Probably indicates contamination from: 

• radio-frequency interference
• interstellar focusing effects
• events within the pulsar

• Can do moment tests: 
• asymmetry of the PDF of timing residuals
• kurtosis, etc.  
• Lentati et al. (2015)
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Example:  characterizing red noise

5
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|

Red noise in IPTA 
(black),PPTA-dr2 
(red) and NANOGrav
datasets (blue)
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PSR B1937+21

Three data sets:
IPTA – first data release
NANOGrav 9 yr
PPTA – same 9 yr as Nanograv

“Triangle plots”



Interpreting results of timing model
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• Visual inspection?
• Do the residuals look weird (sinusoidal trends vs time or orbital 

phase)

• How good is the fit?  How good is the model?

• Are parameters significant?  Do their values make sense?

• Do parameters improve the fit/increase the evidence?

• Are parameters consistent?
• Geometric parallax / vs Change in orbital period
• Consistent with other observatories, IPTA

Red noise in IPTA 
(black),PPTA-dr2 
(red) and NANOGrav
datasets (blue)



Ryan’s recipe for precision timing

• Use tempo2 graphical plugin to inspect residuals
• “Bailes Method” -> remove the low S/N TOAs and see what is left 
• Sort by frequency/flag by backend, etc.
• Average data together to see what low S/N signals exist

• Use maximum-likelihood methods to explore data
• What are the important parameters?
• What are the important noise sources?

• Use Bayesian methods to explore the models
• How are parameters covariant?
• Which parameters/models are supported? 
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Main stochastic processes in timing models

• White noise
• EQUAD (TNEQ):  Increase all TOA uncertainties by constant value (for example 100 ns)
• EFAC (TNEF):  Adjust TOA uncertainties by a factor
• ECORR: Correlated error between simultaneously measured TOAs

• Achromatic red noise
• Power law noise (Amplitude and spectral index)
• Ephemeris noise (Sarah’s talk)
• Gravitational wave background (Tomorrow)

• Chromatic red noise
• Dispersion measure variations:  

• Power law process
• DM events

• Scattering terms


