

The PSRCHIVE Python Interface
Paul Demorest, 2018/03/28
IPTA 2018 Student Workshop, Socorro, NM

 Background information: What is it; how does it work; why would you want
to use it?

 How to use it: Installation; basic usage; overview of the PSRCHIVE class
structure

 Some simple examples

 Activities: See handout for suggestions; also anything else you may be
interested in working on.

Background, motivations

 The PSRCHIVE Python interface lets you access a subset of the
PSRCHIVE classes (data structures, subroutines) directly from Python.

 Lower-level than the command line utils (eg. pam, pat, psredit, etc).

 See http://psrchive.sourceforge.net/manuals/python

 Why is this useful?

 Direct access to data values for exploration, debugging, etc.

 Prototyping or implementation of new analysis routines (often easier in
Python than C++).

 More complex scripting than is possible with psrsh.

 More flexible and/or prettier plotting than is possible with pav/psrplot.

 When this is not so useful – reproducing complex PSRCHIVE applications
(pac, pat).

http://psrchive.sourceforge.net/manuals/python

How does it work

 Built using the “Simplified Wrapper and Interface Generator” aka SWIG.

 SWIG examines the PSRCHIVE C++ header code and automatically
generates ~40,000 lines of “wrapper” code to allow calling the C++ routines
from Python.

 Can in principle generate bindings for languages besides Python.

 http://swig.org

http://swig.org/

How does it work

 Built using the “Simplified Wrapper and Interface Generator” aka SWIG.

 SWIG examines the PSRCHIVE C++ header code and automatically
generates ~40,000 lines of “wrapper” code to allow calling the C++ routines
from Python.

 Can in principle generate bindings for languages besides Python.

 http://swig.org

 “SWIG is lame. Why not use [flavor of the month C/python interface]
instead?”

 The SWIG interface has existed/worked for a long time; so, some inertia.

 Even today, I have not found very many good options for automatic wrapper
generation. But please let me know if you have suggestions!

http://swig.org/

Installation

 Nate has already bundled this into the Docker image (source activate
python2 first). But, in case you ever need to do your own install:

 Python wrapper is distributed with PSRCHIVE; no additional download.

 Basic requirements (beyond those of standard PSRCHIVE):

 Python, with development headers (“python-dev” or similar pacakge).

 SWIG; note, some reports of problems with v3.x

 NumPy

 Very useful but not required: SciPy, matplotlib, ipython/jupyter

 PSRCHIVE builds via “configure; make; make install” process.

 Make sure you configure with --enable-shared

 If all above requirements met, wrappers will be generated!

Checking that it's working:

Good!

Bad!

A super-simple example:

The three fundamental PSRCHIVE data classes

 Profile is a single pulse profile – data as a function of pulse phase only.

 Integration is a set of pulse profiles recorded simultaneously – usually
profiles as a function of frequency channel and/or polarization.

 Archive is a set of Integration as a function of time. Represents a
single data file.

t

Accessing data in Python using these classes

 Archive:

 use archive.get_Integration(isub)

 or archive[isub] to retrieve an Integration

 Integration:

 use integration.get_Profile(ipol,ichan) to retrieve a single
Profile

 Profile:

 use profile.get_amps() to return data as a NumPy array

 Shortcut to get all data:

 Use archive.get_data() to return entire (Nsub, Npol, Nchan, Nbin) data cube
as a NumPy array.

Plotting example:

Plotting example:

Plotting example:

Plotting example:

Accessing data using these classes

 One data access subtlety / gotcha:

 profile.get_amps() returns a view of the original data

 archive.get_data() returns a copy of the original data

 This means that if you want to modify the data in a file you need to change
the values in the results of profile.get_amps()

 Modified data files can be saved to disk using
archive.unload(“new_filename”)

Data processing methods

 Archive has a large number of methods (functions) for performing
common data processing steps.

 Common examples: dedisperse(), remove_baseline(), fscrunch(),
tscrunch(), pscrunch(), convert_state(), …

 archive.execute(“[psrsh code…]”) will run any psrsh command on
the archive.

 How to learn what else is available?

 Browse the PSRCHIVE class documentation at
http://psrchive.sourceforge.net/classes/psrchive

 Tab completion in ipython is very useful!

http://psrchive.sourceforge.net/classes/psrchive

Plotting example with pre-processing:

Plotting example with pre-processing:

Looping over profiles, extracting data:

Other PSRCHIVE classes:

Most use cases only need
Archive, Integration,
and Profile classes.

But some of the PSRCHIVE
algorithm classes are also
included in the Python
interface.

For example,
ProfileShiftFit for doing
template-matching:

No very comprehesive list of
these unfortunately. Browse
the C++ class docs, let me
know if you want something
added.

Advanced PSRCHIVE classes:

Data profile

Standard (aka template)
profile

Summary

 PSRCHIVE has a SWIG-based interface to Python

 This allows you direct access to a large fraction of PSRCHIVE C++ classes
via Python

 This is useful for directly exploring data; prototype or implement new
algorithms; make custom plots; etc.

 See the handout for some simple (as well as less simple) exercises.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

