PSRCHIVE tutorial - IPTA student workshop,
2018

Aditya Parthasarathy and Ryan Shannon
June 10, 2018

Abstract

In this tutorial, you’ll learn to use the PSRCHIVE pulsar data analysis
software. We shall learn how to view, edit and pre-process pulsar data
for timing analysis. PSRCHIVE is an open-source, object oriented data
analysis software that implements a wide range of data analysis algorithms
for use in data calibration, statistical analysis and visualization. Please
refer to van Straten et al. (2012) or visit http://psrchive.sourceforge.net/
for a comprehensive description of the PSRCHIVE software suite.

1 General Introduction

The data that we are going to process today are commonly referred to as archive
data. These files contain astronomical data recorded during a pulsar observa-
tion and are typical stored as a three-dimensional array of pulse profiles, the axes
being time (sub-integration), frequency (channel) and polarization. The data
have attributes called metadata that describe the various physical attributes
of the observation.

A useful point to note here is that, many of the PSRCHIVE programs print
out a brief help message when the - command line option is used,
for e.g. psrstat -h. Descriptive usage instructions are also available online.

The data for this tutorial are stored in docker images. See Ryan’s slide for
the path to the data.

This tutorial is split into 4 parts. Each part accomplishes a particular pro-
cessing task and produces a set of data products. In case you are held back in a
particular part of the exercise but want to proceed ahead, do not worry (!), each
directory is self-consistent and has everything that you need for that exercise.

Let’s get started!

2 Viewing and evaluating pulsar metadata with
psredit and psrstat

The directory Partl contains archive files that we will be processing during
this tutorial.

The first step towards analyzing pulsar data is learning how to view, edit
and evaluate pulsar metadata. Each archive file (in the archive_files directory)
contain metadata that provide important and relevant information about the
pulsar observation and the data recording.

The naming convention is pretty straightforward.

Filename: t120106_011259.rf
"t" denotes the pulsar backend used for the observation.
"120106_011259" denotes the yymmdd_hhmmss of the observation.

Let’s start by querying the metadata of the archive files using psredit.
Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/psredit/

psredit <filename>.rf

Use psredit to explore the metadata of the archive files. Remember that you
can find helpful instructions with the -A command line option. Try to find out
the following:

e What are the dimensions of the data? How many polarizations, frequency
channels and sub-integrations are present? Are these the same for all the
observations?

e What type of observations are these?
e Which telescope was used to record these observations?

e What can you find out about the pulsar backend used for these observa-
tions?

e What receiver was used during these observations?

Write down your answers here (or edit the PDF!)

Now let’s try using psrstat for evaluating the data.
Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/psrstat/

Try running psrstat on a single archive file. What difference do you notice
between the outputs of psrstat and psredit?

Write down your answers here (or edit the PDF!)

Now, let’s try to look at the signal-to-noise distribution of these observations.

In the archive_files directory (Partl),
psrstat -c snr *.rf

The above command will print out the S/N value of each archive file. Note
that psrstat computes the S/N of the profile in the first sub-integration (subint),
frequency channel (chan) and polarization (pol). We now know that each archive
file has nchan number of frequency channels. Let’s try using the loop function-
ality to print out the S/N values of a single archive file as a function of frequency
channel.

In the archive_files directory (Partl),
psrstat -Q -1 chan=0-nchan -c snr <filename>.rf

The -@ option prints out only the value, instead of key=value. The -[
command loops over the specified parameter, in this case, chan. Redirect the

output of the above command to a text file and try plotting (HINT: use gnuplot)
the S/N distribution as a function of the frequency channel. Try playing around
with the other parameters as well. The snr_distribution directory in Partl has
the results to the above exercises including a bonus one, if you are interested!
How do the S/N distributions look like? What other parameters did you use to
plot the S/N?

Write down your answers here (or edit the PDF!)

psrstat is a very useful program that can be used in combination with other
tools to diagnose problems in the data.

3 Using psrsh commands to pre-process the data

In the last section, we saw that the S/N value is computed from the first sub-
integration, frequency channel and polarization for each archive file. We can use
pre-processing commands to integrate different dimensions of the data before
computing the value of any specified parameter.

Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/psrsh/

For example, if we want to compute the S/N values for each polarization but
integrate the frequency channels prior to that:

In the archive_files directory (Partl),
psrstat -Q -1 pol=0- -j fscrunch -c snr <filename>.rf

Note that this is very similar to a previous command where we computed the
S/N ratios of a single archive file as a function of frequency channel. In this
case, we are doing the same but with two main changes:

e We are looping over polarization rather than frequency channels

e We are using a pre-processing command -j to integrate all the frequency
channels.

A list of pre-processing command can be viewed by running:

psrsh -H

This prints out three columns. The first column is the command name, the
second column is a single-letter shortcut key and the third column is a short
description of the command. So, for example if you want to print the S/N of
the total intensity profile (p) integrated across the entire bandwidth (F) and
across every sub-integration (T):

In the archive_files directory (Partl),
psrstat -Q -j FTp -c snr *.rf

Redirect the output of the above command to a text file and plot the distribution
of the S/N ratios for all the fully integrated archive files.

e What difference do you see in S/N ratios before and after integration?
e Does the distribution look different?

Note: The above command might take some time to finish executing. Look
for a text file titled FTp_snr.txt in the snr_distribution directory for answering
the above questions.

Write down your answers here (or edit the PDF!)

4 Using psrplot to visualize data

The psrplot program can be used to visualize the archive data.
Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/psrplot/

The psrplot help instructions inform us that psrplot - P lists the available plot
types. Use this information to plot the phase-vs-frequency image of the total
intensity of the pulsar signal in each file. Remember that the total intensity
profile is formed by using the pscrunch (p) pre-processing command.

Let us use the files in the processed directory in Part2. These are archive
files produced after integrating in time (sub-integration).

In the processed directory (Part2),
psrplot -j p -p freq *.T

You can also specify the plotting device directly from the command line
using the -D option.

In the processed directory (Part2),
psrplot -j p -p freq -D 1/xs *.T

What do you notice in these plots? How do you correct for that effect?

Write down your answers here (or edit the PDF!)

Try using psrplot to:

e Plot the total intensity profile as a function of frequency (HINT: loop over
chan) for a single archive file.

e Plot the Stokes parameters after integrating over all the frequency chan-
nels for a single archive file.

e Plot the pulse phase vs time image of an archive file.

5 Excising radio frequency interference (RFI)

5.1 Automatic RFI excision using paz

The paz program can be used to automatically detect and excise narrow-band
and impulsive RFI from the archive data files. Descriptive usage instructions
can be found online:

http://psrchive.sourceforge.net/manuals/paz/

There are a couple of commonly used pre-processing commands that PSRCHIVE
implements to do this:

zap median

zap mow

Let us use psrplot and psrsh job pre-processor to view an example of data
corrupted by RFI and then use the zap median pre-processing command to
automatically detect and zap it.

In the processed directory (Part2),

psrplot -p freq -jDpC -D 1/xs t120408_221525.T

and then use,

psrplot -p freq -jDpC,"zap median" -D 1/xs t120408_221525.T

In the first case, we use the commands D,p and C to de-disperse, integrate
the polarizations and finally center the profile. You can see that there is a strong
RFI signal present at around 1320 MHz. The second command includes the zap
median pre-processing command. Do you see a difference in the result?

Try it with other archive files. How effective is the RFI mitigation?

Write down your answers here (or edit the PDF!)

You might notice that there is still some residual RFI left. To better char-
acterize subtle RFI, the zap median algorithm can be configured to use any
expression that is interpreted by psrstat.

Similar to zap median, impulsive RFI can be mitigated using zap mow. Take
a look at the script zap.psh in the Part2 directory.

#! /usr/bin/env psrsh

zap median window=24

zap median cutoff=3

zap median exp={$all:max-$all:min}
zap median

zap mow robust

zap mow window=0.1

zap mow cutoff=4.0

zZap mow

Please read the online documentation or feel free to ask questions, if you want
to know more about the above pre-processing commands.

You can use the paz program to load the above pre-processing script to
automatically detect and mitigate RFI from all of the archive files. Create a
new directory and store the cleaned version of the archive files output by paz

In the Part2 directory,
mkdir <new_directory>;
paz -J zap.psh -0 zapped_profiles -e <ext> <path_to_data>

Note that -J is used to load the pre-processing script. The cleaned profiles
are output to the directory zapped_profiles in this case. It will take a while to
excise RFI from all of the archive files. Try running it for a few profiles and
terminate the program.

Compare the RFI excised profiles with the original archive files. How differ-
ent are they?

Write down your answers here (or edit the PDF!)

5.2 Interactive RFI excision using pazi

Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/pazi/

In the processed directory (Part2), you might have noticed archive files that are
formed after integrating over time and polarisation. These files are given an
extension: .Tp. Use these files for interactive RFI excision.

In the processed directory (Part2),
pazi <filename>.Tp

This will load two plotting windows. Use the -h command to learn how to use
the tool.
Load a single archive file using pazi and try to:

e mitigate RFI in sub-integrations in the pulse phase vs time plot

mitigate RFT in frequency channels in the pulse phase vs frequency plot

repeat the above process until the archive file is clean of most RFI

save the file

6 Calibrating data with pac

Let us now try to calibrate our data set. Prior to that, let us use psrstat, psredit
and psrplot to evaluate and view the calibrated files, present in Part3 directory
(calibration_files).

What do you understand about the calibrated files? How are they different
from the archive files?

Write down your answers here (or edit the PDF!)

Descriptive usage instructions can be found online:

http://psrchive.sourceforge.net/manuals/pac/

A simple first-order calibration is done in two stages:

e Create a database of calibrators

e Perform the calibration

In the calibration_files directory (Part3),
pac -w -u cf -k calib_db

The above command produces a database file named calib_db, specified using
the -k option. The -w option enables creation a new database. The -u option
specifies the extension of the calibration archive files.

Once a database is created, it can be used to calibrate the cleaned archive
files. You can access the cleaned archive files from the cleaned directory in
Part3. We will be using these files for the calibration. Create a new directory
to store the cleaned, calibrated profiles.

In the calibration_files directory (Part3),
pac -d calib_db -0 new_calib/ ../cleaned/*.zap

This uses the created database (calib_db) to create calibrated profiles (with
.calibP extension) that are stored in the directory new_calib. Please note that
there is already a directory titled calibrated_cleaned in the Part3 directory that
contains the calibrated profiles.

What differences do you notice between the calibrated and uncalibrated files?
How do the Stokes parameters of the calibrated files look like? Hint: You can
plot 2 files in the same PGPLOT window using the -N option in psrplot.

Write down your answers here (or edit the PDF!)

7 Generating arrival time estimates with pat

Now that we have calibrated and cleaned the data and have gone through how
archive data is pre-processed, let’s go ahead and generate arrival time estimates
using pat.

The arrival time estimates are derived using a previously created standard tem-
plate profile. You can take a look at this in the standard directory, in Part4.
Are you able to view and evaluate the template profile using psrplot, psrstat?

7.1 Estimation of arrival times

Before creating the arrival time estimates, we can use psrsmooth to smoothen
the standard profile

In the standard profiles directory (Part4),
psrsmooth -W J1744-1134_20cm_ana_PDFB4.std

This generates a new file (.sm extension) after using a Wavelet smoothing
(default Sinc) routine on the input standard template profile.

Once we have a smoothed template and calibrated profiles, we can use pat
to generate pulse arrival times.

In the standard profiles directory (Part4),
pat -FT -jp -A FDM -s <standard> -f ‘tempo2’ <calibrated_data>

The above command produces arrival times after frequency, time integration (-
FT), and polarization integration (-jp). It uses a Fourier domain with Markov
chain Monte Carlo algorithm (-A FDM) to compute the ToAs. The -s flag is
used to specify the standard and -f, the output format.

Redirect the output of this command to a text file (J1744.tim). We will be using
this to compute the timing residuals.

7.2 Using tempo2: a brief introduction

Once we have the ToAs, we can use tempo2 to generate the timing residuals for
this pulsar. In the timing directory (Part4), you will see that there are a couple
of files: J1744-1134.par and J1744-1134.toa.

You will learn more about these in the pulsar timing tutorial sessions. For
now, let us use the following command to generate the timing residuals.

In the timing directory (Part4),
tempo2 -gr plk -f J1744-1134.par ../

10

What do you see? Do the timing residuals look good? Are there any obvious
problems that you can see?

Write down your answers here (or edit the PDF!)

References

van Straten W., Demorest P., Oslowski S., 2012, Astronomical Research and Technology,
http://adsabs.harvard.edu/abs/2012AR9, 237

11

