Post-Keplerian effects in binary systems

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

The problem of binary pulsar timing

Some classical tests of General Relativity

• Gravitational redshift of light

$$\frac{\Delta \tau}{\Delta t} = 1 - \frac{\mathsf{G}}{\mathsf{c}^2} \frac{\mathsf{M}_\odot}{\mathsf{R}_\odot}$$

• Perihelion advance of Mercury

$$\Delta \Phi = \frac{\mathsf{G}}{\mathsf{c}^2} \frac{6\pi M_\odot}{\mathsf{a} \left(1 - \mathsf{e}^2\right)}$$

• Precession of Earth-Moon spin

$$\mathbf{\Omega}_{\mathsf{prec}} = rac{\mathsf{G}}{c^2} \, \mathbf{v} imes \mathbf{\nabla} \left(rac{3M_\odot}{2r}
ight)$$

Different regimes of gravity

quasi-stationary, weak-field regime

Alexandre Le Tiec

Different regimes of gravity

quasi-stationary, weak-field regime

quasi-stationary, strong-field regime

Different regimes of gravity

quasi-stationary, weak-field regime

quasi-stationary, strong-field regime

highly dynamical, strong-field regime

Different regimes of gravity

quasi-stationary, weak-field regime

quasi-stationary, strong-field regime

highly dynamical, strong-field regime

radiative regime

Different regimes of gravity

quasi-stationary, weak-field regime

highly dynamical, strong-field regime

• Induced quadrupole moment: $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$

Alexandre Le Tiec

- Induced quadrupole moment: $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$
- Induced quadrupolar force: $F_{quad}^i \sim m \partial_i (\frac{Q}{r^3}) \sim R^5 (Gm^2/D^7)$

- Induced quadrupole moment: $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$
- Induced quadrupolar force: $F^i_{quad} \sim m \partial_i (\frac{Q}{r^3}) \sim R^5 (Gm^2/D^7)$
- For a compact body with $R \sim Gm/c^2$,

$$rac{F_{ ext{quad}}}{F_{ ext{Newt}}}\sim rac{(G^6/c^{10})(m/D)^7}{Gm^2/D^2}\sim \left(rac{Gm}{c^2D}
ight)^5\sim \left(rac{v}{c}
ight)^{10}\ll 1$$

Outline

1 The Newtonian two-body problem

2 Relativistic celestial mechanics

Periastron advance Geodetic spin precession Gravitational radiation reaction

3 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Outline

1 The Newtonian two-body problem

2 Relativistic celestial mechanics

Periastron advance Geodetic spin precession Gravitational radiation reaction

3 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Real two-body problem

Real two-body problem

$$H(\mathbf{x}_a, \mathbf{p}_a) = \frac{\mathbf{p}_1^2}{2m_1} + \frac{\mathbf{p}_2^2}{2m_2} - \frac{Gm_1m_2}{r_{12}}$$
$$\downarrow \mathbf{p}_1 + \mathbf{p}_2 = \mathbf{0}$$

Real two-body problem

$$H(\mathbf{x}_{a}, \mathbf{p}_{a}) = \frac{\mathbf{p}_{1}^{2}}{2m_{1}} + \frac{\mathbf{p}_{2}^{2}}{2m_{2}} - \frac{Gm_{1}m_{2}}{r_{12}}$$
$$\downarrow \mathbf{p}_{1} + \mathbf{p}_{2} = \mathbf{0}$$

Effective one-body problem

$$H(\mathbf{r},\mathbf{p}) = \frac{\mathbf{p}^2}{2\mu} - \frac{Gm\mu}{r}$$

Keplerian elements

- eccentricity e
- semi-major axis a

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E = -Gm\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E=-{\it Gm}\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

$$r(u) = a(1 - e \cos u)$$

$$\phi(u) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}\right)$$

$$\nu(u) = u - e \sin u = n(t - t_0)$$

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E=-{\it Gm}\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

$$r(u) = a (1 - e \cos u)$$

$$\phi(u) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}\right)$$

$$\nu(u) = u - e \sin u = n (t - t_0)$$

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E=-{\it Gm}\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

$$r(u) = a (1 - e \cos u)$$

$$\phi(u) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}\right)$$

$$\nu(u) = u - e \sin u = n (t - t_0)$$

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E=-{\it Gm}\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

$$r(u) = a (1 - e \cos u)$$

$$\phi(u) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}\right)$$

$$\nu(u) = u - e \sin u = n (t - t_0)$$

Keplerian elements

- eccentricity e
- semi-major axis a

Constants of motion

• energy
$$E=-{\it Gm}\mu/(2a)$$

• ang. mom.
$$L = \mu \sqrt{Gma(1-e^2)}$$

Parametric solution

$$r(u) = a (1 - e \cos u)$$

$$\phi(u) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}\right)$$

$$\nu(u) = u - e \sin u = n (t - t_0)$$

Kepler's third law: $n^2 a^3 = Gm$

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction

 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics

Periastron advance

Geodetic spin precession Gravitational radiation reaction

3 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Relativistic perihelion advance of Mercury

Leading-order relativistic angular advance per orbit:

$$\Delta \Phi = \frac{6\pi G M_{\odot}}{c^2 a \left(1 - e^2\right)}$$

Origin	Amplitude ("/cent.)
Other planets Sun oblateness General relativity	$531.63 \pm 0.69 \\ 0.028 \pm 0.001 \\ 42.98 \pm 0.04$
Total Observed	$\begin{array}{c} 574.64 \pm 0.69 \\ 574.10 \pm 0.65 \end{array}$

Two-body Hamiltonian at 1PN order

$$H = H_{\rm N} + \frac{1}{c^2}H_{\rm 1PN} + \mathcal{O}(c^{-4})$$

$$\begin{aligned} H_{1\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8} \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{3}} + \frac{1}{4} \frac{G^{2}m_{1}m_{2}m}{r_{12}^{2}} \\ &+ \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left[-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{\mathbf{p}_{1} \cdot \mathbf{p}_{2}}{m_{1}m_{2}} + 2 \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}m_{2}} \right] \end{aligned}$$

Alexandre Le Tiec

Periastron advance in binary pulsars

• Generic eccentric orbit parametrized by the *two* frequencies

$$n = \frac{2\pi}{P}, \quad \langle \dot{\varphi} \rangle = \frac{2\pi + \Delta \Phi}{P}$$

• Leading-order periastron advance:

$$\dot{\omega}\equivrac{\Delta\Phi}{2\pi}=rac{3G(m_1+m_2)}{c^2a(1-e^2)}$$

PSR	Amplitude (°/year)
B1913+16	4.226598 ± 0.000005
J0737-3039	16.89947 ± 0.00068

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction

 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Geodetic spin precession

[de Sitter, MNRAS 1916]

• GR predicts that a test spin **S** with velocity **v** in a gravitational potential $\Phi \equiv GM/(c^2r)$ will precess according to

$$rac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} = \mathbf{\Omega}_{\mathsf{prec}} imes \mathbf{S} \quad \mathsf{where} \quad \mathbf{\Omega}_{\mathsf{prec}} \simeq rac{3}{2} \, \mathbf{v} imes \mathbf{
abla} \Phi$$

 Precession of Earth-Moon spin axis of ~ 1.9"/cent. confirmed using Lunar Laser Ranging [Shapiro et al., PRL 1988]

Geodetic effect in Gravity Probe B

[Everitt et al., PRL 2011]

	Measured	Predicted
Geodetic precession (mas/yr)	6602 ± 18	6606
Frame-dragging (mas/yr)	$\textbf{37.2} \pm \textbf{7.2}$	39.2

Spin-orbit coupling at leading order

[Barker & O'Connell, PRD 1975]

The double pulsar PSR J0737-3039

[Burgay et al., Nature 2003]

Spin precession of pulsar B

[Breton et al., Science 2008]

Spin precession of pulsar B

[Breton et al., Science 2008]

Spin precession of pulsar B

[Breton et al., Science 2008]

IPTA 2017

Alexandre Le Tiec

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics

Periastron advance Geodetic spin precession Gravitational radiation reaction

 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

Einstein quadrupole formula

Einstein quadrupole formula ${\mathcal F}$ $Q_{ij}(t)$ ${\cal F}$

Gravitat. wave energy flux

$$\mathcal{F}(t) = rac{G}{5c^5} \left\langle \ddot{Q}_{ij}\ddot{Q}_{ij}
ight
angle$$

Alexandre Le Tiec

\mathcal{F} F $Q_{ij}(t)$ \mathcal{F}

Einstein quadrupole formula

Gravitat. wave energy flux

Radiation reaction force

$${\cal F}(t) = {G \over 5c^5} \Big\langle \, {\ddot Q}_{ij}^{\cdot \cdot} \, {\ddot Q}_{ij}^{\cdot \cdot} \Big
angle \qquad \longleftrightarrow$$

$$F^{i}(t, \vec{x}) = rac{2G}{5c^{5}}Q^{(5)}_{ij}x^{j}$$

Alexandre Le Tiec

$$\mathcal{F} = \frac{32G^4}{5c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)}{a^5 (1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right)$$
$$\mathcal{G} = \frac{32G^{7/2}}{5c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)^{1/2}}{a^{7/2} (1 - e^2)^2} \left(1 + \frac{7}{8} e^2 \right)$$

$$\mathcal{F} = \frac{32G^4}{5c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)}{a^5 (1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) = -\left\langle \frac{\mathrm{d}E}{\mathrm{d}t} \right\rangle$$
$$\mathcal{G} = \frac{32G^{7/2}}{5c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)^{1/2}}{a^{7/2} (1 - e^2)^2} \left(1 + \frac{7}{8} e^2 \right) = -\left\langle \frac{\mathrm{d}L}{\mathrm{d}t} \right\rangle$$

Binary pulsar PSR B1913+16

[Hulse & Taylor, ApJ 1975]

Orbital decay of PSR B1913+16

[Weisberg & Huang, ApJ 2016]

Orbital decay of PSR B1913+16

[Weisberg & Huang, ApJ 2016]

Alexandre Le Tiec

Binary pulsar tests of orbital decay

PSR	$\dot{P}_{int}/\dot{P}_{GR}$	Reference
B1913+16	0.9983 ± 0.0016	Weisberg & Huang (2016)
J0737-3039	1.003 ± 0.014	Kramer <i>et al.</i> (2006)
B2127+11C	1.00 ± 0.03	Jacoby <i>et al.</i> (2006)
J1756-2251	1.08 ± 0.03	Ferdman <i>et al.</i> (2014)
J1906+0746	1.01 ± 0.05	van Leeuwen <i>et al.</i> (2015)
J1141-6545	1.04 ± 0.06	Bhat <i>et al.</i> (2008)
B1534+12	0.91 ± 0.06	Stairs <i>et al.</i> (2001)
J1738+0333	0.94 ± 0.13	Freire <i>et al.</i> (2012)
J0348+0432	1.05 ± 0.18	Antoniadis <i>et al.</i> (2013)

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction

 3 Light propagation in curved spacetime Einstein delay Shapiro delay

4 Testing relativistic gravitation

space

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction

3 Light propagation in curved spacetime Einstein delay

Shapiro delay

4 Testing relativistic gravitation

Gravitational redshift of light

• Light frequency

$$rac{\omega_{
m em}}{\omega_{
m rec}} = 1 + rac{G}{c^2} rac{M_\odot}{R_\odot}$$

Gravitational redshift of light

• Light frequency

$$rac{\omega_{
m em}}{\omega_{
m rec}} = 1 + rac{G}{c^2} rac{M_\odot}{R_\odot}$$

• Proper time

$$\frac{\Delta \tau}{\Delta t} = 1 - \frac{G}{c^2} \frac{M_{\odot}}{R_{\odot}}$$

Gravitational redshift of light

• Light frequency

$$rac{\omega_{
m em}}{\omega_{
m rec}} = 1 + rac{G}{c^2} rac{M_\odot}{R_\odot}$$

• Proper time

$$\frac{\Delta \tau}{\Delta t} = 1 - \frac{G}{c^2} \frac{M_{\odot}}{R_{\odot}}$$

 Confirmed by Gravity Probe A at 0.007%
 [Vessot *et al.*, PRL 1980]

$$t = (u - e \sin u)/n$$

$$r = a (1 - e \cos u)$$
$$t = (u - e \sin u)/n$$

$$\Delta_{\mathsf{E}}(u) \equiv \tau_{\mathsf{p}} - t = \gamma \sin u$$

Alexandre Le Tiec

$$r = a (1 - e \cos u)$$
$$t = (u - e \sin u)/n$$

$$\Delta_{\mathsf{E}}(\boldsymbol{u}) \equiv \tau_{\mathsf{p}} - t = \boldsymbol{\gamma} \sin \boldsymbol{u}$$

$$\gamma = \frac{Gm_c(m_p + 2m_c)}{c^2 a (m_p + m_c)n} e$$

$$r = a (1 - e \cos u)$$
$$t = (u - e \sin u)/n$$

$$\Delta_{\mathsf{E}}(u) \equiv \tau_{\mathsf{p}} - t = \gamma \sin u$$

$$\gamma = \frac{Gm_c(m_p + 2m_c)}{c^2 a (m_p + m_c)n} e$$

PSR	Amplitude (ms)
B1913+16	4.2992 ± 0.0008
J0737-3039	0.3856 ± 0.0026

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction

 3 Light propagation in curved spacetime Einstein delay
 Shapiro delay

4 Testing relativistic gravitation

[Shapiro, PRL 1964]

[Shapiro, PRL 1964]

[Shapiro, PRL 1964]

[Shapiro et al., PRL 1968]

Shapiro delay in binary pulsars

Double pulsar PSR J0737-3039

[Kramer et al., Science 2006]

Binary pulsar PSR J1614-2230

[Demorest et al., Nature 2010]

IPTA 2017

Alexandre Le Tiec

Constraining the NS equation of state

[Demorest et al., Nature 2010]

Outline

The Newtonian two-body problem

2 Relativistic celestial mechanics Periastron advance Geodetic spin precession

Gravitational radiation reaction

 Light propagation in curved spacetime Einstein delay Shapiro delay

• Periastron advance

$$\dot{\omega} = rac{3G^{2/3}}{c^2} \left(rac{2\pi}{P}
ight)^{5/3} (1-e^2)^{-1} (m_1+m_2)^{2/3}$$

IPTA 2017

Alexandre Le Tiec

• Periastron advance

$$\dot{\omega} = rac{3G^{2/3}}{c^2} \left(rac{2\pi}{P}
ight)^{5/3} (1-e^2)^{-1} \left(m_1+m_2
ight)^{2/3}$$

• Einstein delay

$$\gamma = \frac{G^{3/2}}{c^2} \left(\frac{P}{2\pi}\right)^{1/3} e \; \frac{m_2(m_1 + 2m_2)}{(m_1 + m_2)^{4/3}}$$

IPTA 2017

Alexandre Le Tiec

Three post-Keplerian parameters

Alexandre Le Tiec

• Periastron advance

$$\dot{\omega} = rac{3G^{2/3}}{c^2} \left(rac{2\pi}{P}
ight)^{5/3} (1-e^2)^{-1} (m_1+m_2)^{2/3}$$

• Einstein delay

$$\gamma = \frac{G^{3/2}}{c^2} \left(\frac{P}{2\pi}\right)^{1/3} e \; \frac{m_2(m_1 + 2m_2)}{(m_1 + m_2)^{4/3}}$$

• Orbital decay

$$\dot{P} = -\frac{192\pi G^{5/3}}{5c^5} \left(\frac{2\pi}{P}\right)^{5/3} f(e) \ \frac{m_1 m_2}{(m_1 + m_2)^{1/3}}$$

Three post-Keplerian parameters

Alexandre Le Tiec

Tests of relativistic gravity

[Esposito-Farèse, Proc. MG10]

Tests of relativistic gravity

[Esposito-Farèse, Proc. MG10]

Mass measurements for neutron stars

[Antoniadis et al., ApJ 2016]

