Gravitational Wave Data Analysis for PTAs

Paul T. Baker

Center for Gravitational Waves and Cosmology West Virginia University

29 June 2017

Our Likelihood is an N_{toa} D gaussian

$$\mathcal{L} \propto \exp\left(-\frac{1}{2}\vec{r}\cdot\mathbb{C}^{-1}\cdot\vec{r}\right)$$

- \vec{r} : residuals (data model)
- \mathbb{C} : covariance matrix (noise)

likelihood is probability that our data is observed, if our model is correct

• $\max[p\left(d \mid m(\lambda)\right)] \rightarrow$ model most likely to have produced our data

What is the probability that this (or any) model is correct?

Probability hypothesis \mathcal{H} is true given you observed data d:

Probability hypothesis \mathcal{H} is true given you observed data d:

• Posterior probability, \mathcal{P} $p(\mathcal{H} \mid d) = \frac{p(\mathcal{H}) \quad p(d \mid \mathcal{H})}{p(d)}$ • Prior probability p

Probability hypothesis \mathcal{H} is true given you observed data d:

• Posterior probability, ${\cal P}_{\chi}$

Probability hypothesis \mathcal{H} is true given you observed data d:

• Posterior probability, \mathcal{P} .

Need a way to compute Posterior distribution without computing Evidence

Sample from unnormalized distribution:

- Markov chain Monte Carlo (*e.g.* emcee, kombine, PTMCMCSampler)
- Nested Sampling (e.g. MultiNest)

histogram of N samples \rightarrow Posterior as $N\rightarrow\infty$

inference with samples

in practice first samples are biased - burn in

a properly converged chain of samples

Marginalization – posterior for subset of parameters

$$\mathcal{P}(x) = \int \mathcal{P}(x, y, z) \,\mathrm{d}y \,\mathrm{d}z$$

marginalization

parameter estimation

posterior density function

GW Data Analysis Paul T. Baker, WVU

Upper Limits

posterior density function

GW Data Analysis Paul T. Baker, WVU

PTA upper limit on A_{gw} – first marginalize over all other params, then integrate to 95%

GW Data Analysis Paul T. Baker, WVU

model selection

$$\mathcal{E}_1 = \int \mathcal{L}_1(x, y, z) \cdot p(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$
$$\mathcal{E}_2 = \int \mathcal{L}_2(x, y) \cdot p(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

$$\mathcal{B}_{1,2}=rac{\mathcal{E}_1}{\mathcal{E}_2}$$

Bayes factor is betting odds.

model selection - Bayes factor

$$\mathcal{B}_{1,2}=rac{\mathcal{E}_1}{\mathcal{E}_2}$$

${\mathcal B}$	"sigma"	
2	1σ	no evidence
20	2σ	weak evidence
2×10^6	5σ	very strong evidence

(somtimes reported as $\log \mathcal{B}$)

Currently no GW detection from PTAs

95 % upper limit for stochastic GW background:

 $\begin{array}{rl} {\sf EPTA} & 3.0 \times 10^{-15} & {\sf Lentati+(2015)} \\ {\sf PPTA} & 1.0 \times 10^{-15} & {\sf Shannon+(2015)} \\ {\sf NANOGrav} & 1.5 \times 10^{-15} & {\sf Arzoumanian+(2015)} \end{array}$

IPTA 1.7×10^{-15} Verbiest + (2016)

current ULs are ephemeris dependent

some current PTA results

Detection of GWB will be a gradual process

Detection claim must compare multiple models

How are you sure it's $\ensuremath{\mathsf{GWB}}$

and not some other source of red noise?

- o common red process
- correlated red process
 - quadrupole (Hellings-Downs)
 - dipole (ephemeris)
 - monopole (clocks)
- different spectral indices