

région Centre

Pulsar timing and the IISM: dispersion, scattering

10 PARIS

9

Jean-Mathias Grießmeier Station de Radioastronomie de Nançay, LPC2E, Université Orléans jean-mathias.griessmeier@cnrs-orleans.fr

• Pulsar timing

- Dispersion
- Scattering
- Scintillation

1967: First pulsar detection

[Hewish et al. 1968]

The two lives of pulsars

t=0: P0~30 ms (given by conservation of angular momentum)

rapid slowdown end of emission after a few 10s of Myr (P0>1s)

The two lives of pulsars

t=0: P0~30 ms (given by conservation of angular momentum)

rapid slowdown end of emission after a few 10s of Myr (P0>1s)

some pulsars get reaccelerated and emit again in radio "recycled pulsars" "millisecond-pulsars" (P0~3 ms) (P1~10⁻²⁰!) [Alpar et al. 1982]

Pulsar recycling

Saxton, NRAO

[Alpar et al. 1982; Rhadakrishnan et al. 1984]

Pulsar recycling

Res

1.0

IGR J18245-2452 = PSR M28I

The two lives of pulsars

t=0: P0~30 ms (given by conservation of angular momentum)

rapid slowdown end of emission after a few 10s of Myr (P0>1s)

some pulsars get reaccelerated and emit again in radio "recycled pulsars" "millisecond-pulsars" (P0 \sim 3 ms) (P1 \sim 10⁻²⁰!) [Alpar et al. 1982]

PSR J1909-3744 observation on 2013-03-12, 20h30 P0 = 2.947108068107624(2) ms P1: 0.0000000000001 in 2 mins

The two lives of pulsars

t=0: P0~30 ms (given by conservation of angular momentum)

rapid slowdown end of emission after a few 10s of Myr (P0>1s)

some pulsars get reaccelerated and emit again in radio "recycled pulsars" "millisecond-pulsars" (P0~3 ms)... forever! (P1~10⁻²⁰!) [Alpar et al. 1982]

PSR J1909-3744 observation on 2013-03-12, 20h30 P0 = 2.947108068107624(2) ms P1: 2.6 ms in 10 Gyr

Physics and measurements

mesuring time = counting clock ticks

→ can be extremely precise
→ possible to measure tiny effects

however: requires a precise clock!

→ use highly stable MSPs
→ "pulsar timing"

PSR J1909-3744 observation on 2013-03-12, 20h30 P0 = 2.947108068107624(2) msP1: 0.0000000000001 in 2 mins

TOAs ("time of arrival")

1600-30

1600-30

1600-30

1600-30

TOAs

1368.000

1368.000

1368.000

1368.000

54065.4600579101507

54071 4479745723167

54072 4445486474761

54079.4312384526258

0.60

0.57

0.53

0 50

TOAs ("time of arrival")

radio telescope

Ionized Interstellar medium (IISM)

- Pulsar timing
- Dispersion
- Scattering
- Scintillation

Dispersion

[Hewish et al. 1968]

Dispersion

- refractive index of interstellar medium: n(v)
- lower frequencies are delayed

$$t)[w_2](-t)[w_1]) = rac{DDM}{m} \left(rac{1}{w_2^2} - rac{1}{w_1^2}
ight)$$

Dispersion : PSR B0809+74

between 1410 & 1400 MHz (DM=5.8): 0.2 ms between 150 & 140 MHz (DM=5.8): 0.2 s between 24 & 14 MHz (DM=5.8): 81 s

The dispersion measure

d=2 kpc, a=3 pc

$$\Delta t(f) \approx 4.15 \times 10^3 \text{ DM } f^{-2}$$

 $[DM] = \int n_e dl$

DM is large for distant source

DM is large for pulsars surrounded by ionized medium (SNR)

dispersion can be corrected

dispersion can be corrected

dispersion can be corrected

problem 1: integrated profile widens→ less precision for timing

problem 2: in the case of scintillation, the integrated profile shifts!

NUMERICAL COHERENT DE-DISPERSION 2 complex polarizations Acquisition Acquisition Acquisition Acquisition ANN NAM FFT FFT FFT FFT mm mm MMAN MMAN MMM MMM MM MMM **Inverse chirp function Inverse chirp function Inverse chirp function Inverse chirp function** MMMM MMAN mm mm MMAN MMAN mm Imm m InvFFT InvFFT InvFFT InvFFT Folding Folding Folding Folding

will have will have

wind have more haven

- FFT + inverse filter + FFT⁻¹
- computationally (much!) more expensive
- avoids the problems of incoherent dedispersion
- routinely used since ~2000
- → for pulsar timing, use coherent dedispersion whenever possible!

Interstellar medium: variations

radio telescope

DM variations

[Cognard et al. 1997]

DM variations

- has to be taken into account in timing!
- one DM per observation!
- → less precision on DM and profiles
- \rightarrow less precision on TOAs
- one possible solution:
- include low-frequency observations (simultaneous!)→ DM
- use this DM to correct high-frequency observations
- but: low- and high-frequency radio waves on the same path? [= frequency-dependent DM?]
- active field of research!

[Cordes et al. 2016]

- Pulsar timing
- Dispersion
- Scattering
- Scintillation

Scattering (scatter broadening)

Scattering (scatter broadening)

Scattering

[Ramachandran et al. 1997]

Scattering

 τ_{sc}

 $\tau_{sc} \propto f^{-4}$

Scattering

Time variable scattering

- time-independent scattering can be (partially) corrected
- broader profiles \rightarrow less precision on TOAs
- variations in the ISM \rightarrow time dependent scatter broadening $\tau_{sc}(t)$
- reduces precision of TOAs

[Kuzmin et al. 2008]

- Pulsar timing
- Dispersion
- Scattering
- Scintillation

Propagation et turbulence

Propagation et turbulence

Scintiallation

- time-dependent
- time-dependent profiles \rightarrow less precise TOAs
- scintillation is difficult to correct (cyclic spectroscopy?)

- Pulsar timing
- Dispersion
- Scattering
- Scintillation

Conclusion

Propagation et turbulence

- some pulsars are more suited for timing than others!
 - sharp profiles
 - small P0, small P1
 - DM(t)=const, $\tau_{sc}(t)$ =const
 - → know your pulsar!
- IISM will make timing more difficult, but not impossible
- some of the effects can be corrected at least partially

this also allows to study the IISM!
 "Some people's noise is other people's data"!
 (e.g. mapping of the IISM)
 → study the IISM!