Bayesian Technigues In
Pulsar Timing

The rise of Bayesian methods in astrophysics

Q
=)
®
) o
)
°

@
N
E
-
o
=
2
)
&
a
©
-

8
=
S

Z

1985 1990 1995 2000 2005 2010
Year

CAVENDISH
e ASTROPHYSICS

LINDLEY LENTATI
CAMBRIDGE UNIVERSITY




Overview
Part 1:

Baye's Theory - Terminology
Methods
Examples

Part 2:

Noise in pulsar timing - Intrinsic (Glitches, Timing Noise)
The Interstellar Medium
Systematics
The Solar System
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Bayesianism and Freguentism
Start at the heart of It..

Asks tTwo different questions:

Frequentist:

What is the probability of my data, given my model¢
Assumes model is fixed — data random variable

Bayes:
What is the probability of my model, given my data?¢
Assumes data is fixed — model is random variable



Bayes Equation
The Prior The Likelihood

P Dy — —LOPDI6)

|P(o)P(D | 6)do

The Posterior Ihe Evidence



Likellhood

P(D | M) : Probabillity of the data given the model
(The frequentist bit)

Most typically just Gaussian chi-sQ:

E.g. for independent data points:
d = data

m = model

O = error on the data

P(D | M) = exp(-0.5(d-m)A2/0N2)



Prior

P(M) : The probability of our model parameters before we do
the experiment.

Many different choices:

Uniform in the parameter
Uniform in the log of the parameter

Gaussian with mean and error
+ ...



Prior

Different priors can lead to very different results.
Consider fitting for 1-dim problem: amplitude of

sine wave (10) in some noisy data.

Not usually a problem in high signal-to-noise cases. &
Here the data can update our current knowledge: #

0

5
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3 Priors:
Uniform in amplitude (red)
Uniform in log-amplitude (green)
Gaussian (blue)

Results are consistent:
E.g. consider Gaussian prior:
9.5 +/-5

Probable range in posterior is
10.17 +/- 0.14

Prior decreases log-likelihood by 1 for
change in parameter value that is
huge compared to that inferred
by data




Prior

Different priors can lead to very different -

results.
In the Low signal-to-noise case things

are not so simple.

As before
3 Priors:
Uniform in amplitude (red)
Uniform in log-amplitude (green)
Gaussian (blue)

Now results not consistent




The Evidence

Used to evaluate the relative probabilities of different Hypothesis

Evidence is the integral of the likelihood over the prior

P(d|M) = |, d9P(d|6, M)P(6|M)




The Evidence

Automatically implements Occams Razor:
A simpler model will be preferred unless the more complex one describes the data
much Peliel

P(d|M) = [dOL(0)P(0|M)

Likelihood ~ P(0)60L(0)

- A
p \ \

22 1.(0)6
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Occam’s factor




The Evidence

Used to evaluate the relative probabilities of different Hypothesis

Evidence is the integral of the likelihood over the prior

P(d|M) = |, d9P(d|6, M)P(6|M)

Define a ‘Bayes Factor’

BOl — P(d|My)

P(d|My)



The Evidence

InB relative odds fav%ﬂ;efag?ﬁgel's Interpretation
. not worth
<0750




'‘Marginalisation’

Key to Bayesian analysis: Infegrate over ‘nuisance’ parameters:
Things you don’t care about but that affect the answer you want to get.

 Consider 2d problem -
*  Probabllity density for parameters
A and B.

=100 600K PANY Y | HODN 2 MM
[




'‘Marginalisation’

Can marginalise numerically after sampling

Integrate over A to get the probability of B




‘Marginalisation’

 Can marginalise numerically after sampling

Integrate over B to get the probability of A



'‘Marginalisation’

« Can also marginalise analytically

p(d |B) = [ p(d|A, B)p(4A)dA




'‘Marginalisation’

For uniform priors: P(M | D) = P(D | M).
Doesn’'t mean Frequentist and Bayesian results will agree.

Volume Matters

Best-fit
smiallesl chi-sguarcd)

Volume offeel

Poslerior
mean




Nelgglelligle

Said we want to calculate P(X | D, M)
Non-trivial for non-trivial problems

Have to sample from posterior



Markov-Chain Monte-Carlo

Markov chain — sequence of state changes that
depends only on the most recent states, not the states

that preceded them.

Simple example (from Wikipediq)

Probability of the weather.



Markov-Chain Monte-Carlo

P(Tomorrow is Sunny | Today is rainy) = 0.5
P(Tomorrow is rainy | Today is rainy ) = 0.5

P(Tomorrow is rainy | Today is sunny) = 0.1
P(Tomorrow is Sunny | Today is sunny) = 0.9




Markov-Chain Monte-Carlo

P(Tomorrow is Sunny | Today Is rainy) =
P(Tomorrow is rainy | Today is rainy ) = 0.5

P(Tomorrow is rainy | Today is sunny) =
P(Tomorrow is Sunny | Today is sunny) =

»

(Sunin 2 days| Sun) =P(S,S|S) + P(S,R | S) =0.86
P(Sun in 30 days | S — .. .... = 0.833
?(Sun in 100 days | Sun}

(Sun In 100 days | RS T—_— ........ = 0.833

D




Markov-Chain Monte-Carlo

Probability of weather tomorrow depends only on the
last few days.

Forgets about everything previous.
Important aspect of all samplers.

It means that eventually we will always converge on the
equilibrium probability no matter our starting point.



Random walk Mefropolis Hastings

Simplest sampler you can imagine
~ 6 lines of Code:

Choose parameter starting point 6,

Calculate likelihood L,

Do:

Take a siepiicEs

Calculate likelihood L,

Draw d random uniform number U from 0O.. 1
fL,/Ly> U accept the new point, otherwise reject.
Repeat.




Random walk Metropolis Hastings

Has its problems: Convergence rate depends on step size

probability density
probability dznsity

Step Size: Just right Too small Too big



Random walk Metropolis Hastings

But will get there eventually

f
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Step Size: Just right Too small Too big



Random walk Metropolis Hastings

For simple problems though it is all you need.
E.g. Unit Square:

Metropolis

t=0
acceptance rate = -nan

mean(X) = (-nan, -nan) / true mean = (0, 0)

IQR(X[0]) = (nan, nan) / true IQR = (-.5, .5)
IQR(X[1]) = (nan, nan) / true IQR = (-.5, .5)

healthyalgorithms.wordp




Random walk Metropolis Hastings

Quickly becomes insufficient for more complex problems:
2D covariant parameters

Metropolis

t=0
acceptance rate = -nan

mean(X) = (-nan, -nan) / true mean = (0, 0)
IQR(X[0]) = (nan, nan) / true IQR = (-.5, .5)
IQR(X[1]) = (nan, nan) / true IQR = (-.5, .5)




Random walk Metropolis Hastings

Adaptive Metropolis much better solution.
Adapts step size to decrease autocorrelation length.

Adaptive Metropolis

t=0
acceptance rate = -nan

mean(X) = (-nan, -nan) / true mean = (0, 0)

IQR(X[0]) = (nan, nan) / true IQR = (-.5, .5)
IQR(X[1]) = (nan, nan) / true IQR = (-.5, .5)

healthyalgorithms.wordp




Metropolis Hastings

Generally very poor for multi modal problems:

If step size allows jumps between modes,
it will be too big within each mode.

If step size small enough 1o explore individual modes,
It wont step between them.



Nested Sampling (Skilling 2004)

Solves a lot of these problems

Draw N points Uniformly from the prior
Lowest likelihood point = L

Draw a new point with likelihood L
If L, > L, replace point with the new point

Otherwise fry again

Liddle st al (2006)




Nested Sampling (Skilling 2004)

The Challenge:
Draw new points from within the hard boundary L > L,

Mukherjee (2005): Use ellipses to define the boundary

Still wasn’t great for multi-modal problems.



MultiNest (Feroz & Hobson 2008)

At each iteration:
Construct optimal multi-ellipsoidal bound
Pick ellipse at random to sample new point




MultiNest (Feroz & Hobson 2008)

Works great for multi-modal problems:




E.g. Gaussian Shells:

Start by sampling unitormly from prior in 2-dim:




E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards Iin likelihood




E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards Iin likelihood




E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards Iin likelihood




E.g. Gaussian Shells:

After sampling you have your posterior probability
distributions.




Polychord (Handley & Hobson 2015)

Successor to MultiNest.
Still uses nested sampling.

Works in much higher dimensions (up to ~ 150)



Nested Sampling

Dimensionality still a problem
Volume In a hypercube Is dominated by the edge

§ Volume of cube

Volume of sphere
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Hamiltonian Monte Carlo

Very Different approach to sampling.
Able 1o sample millions of dimensions.

Uses gradient information to evolve the system using
Hamilfonian mechanics.

Define Hamiltonian as:




Hamiltonian Monte Carlo

More complicated — but reduces random walk

Random-walk Metropolis Hamiltonian Monte Carlo




Hamiltonian Monte Carlo

More complicated — but reduces random walk

04 06 08 10 12 14 160 100 200 300 400 500 600
intercept




Hamiltonian Monte Carlo

Downside: Lofs of tuneable parameters still (1 mass per parameter).
'‘Guided’ Hamiltonian sampling solves this (Balan et al in prep)

Uses Hessian to define a step size matrix, accounting for correlations
In principle leaves only 1 funeable parameter (overall step size).

Can still require ‘tuning’ runs if the Hessian Is a poor approximation to
the frue likelihood.

ldeally would like some kind of adaptive hamilfonian monte carlo
(anyone?¢)



Part 2:
Data Problems
(Or why we havn't detected
gravitational waves yet)



What can we say about pulsarse

They are precise clocks.



Some :
Pulsars adre very precise clocks

This is the crab
pulsar -

Radiation from the
pulsar creates shocks
That are felt for

~ 10 light years

Fig: NASA



Dleare Q€ rUDDISH cocks

But Crab not a stable
rotator:;

Period of rotation has
significant variation with
time

No good for GW science.

Fig: Lyne et al 2014



Data Challenges

<- 100 ns white noise
(as per early predictions)
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MJD

Actual Data ->

J0437-4715
(That great one mentioned e
earlier...)




Data Challenges

In this case noise mostly due to
the interstellar medium.

randomly
distorted
spatially wavefronts
coherent
radiation diffraction
pattern

turbulent
plasma

(ISM)

Dependent on
observing
frequency

t,(v) = K DM/(v*)

K=4.15x 10" Hz? cm’ pc ' s




Data Challenges

Model signal statistically -
Scale with observing frequency
(You'll be doing this later]

JO437-4715 (Wrms = 0.651 us) post—fit

—2000 —1000




Data Challenges

But the signal isn’t stationary...

Over densfry N the ISM

| 4 i ,|] Wb ﬂlml

Void in the ISM




Data Challenges

PSR J1€09-2744
2.947 ms
DM = 10.39 p(:/u::r'\‘s

So just Increase the bandwidth righte

Massive Increase over the last few years
Further increases to come

~4GHz simultaneous bandwidth for
e Up coming systemes.




Data Challenges

More than just DM though:
Scattering, ‘frequency-dependent DM’

PPTA Limits for PSR J1909-3744:
10cmonly : 1e-15
10+20cm: 9%e-16
10+20+50: 2e-15

Can readlly hurt:
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Data Challenges

Better modelling can make a huge difference (Lentati et al 2016)
60% increase in sensitivity compared to ‘standard’ models
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Data Challenges

Intrinsic high frequency variation
INn arrival fime of pulses

Better telescopes won't help.

Already at the limit for some
pulsars.




Data Challenges

Intrinsic high frequency variation
In arrival time of pulses

Better telescopes won't help.

Z
=
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Already at the limit for some pulsars.

Not necessarily Gaussian either.

Fig: Lentati et al 2015



Data Challenges

Intrinsic low frequency variation

in the arrival times (like Crab) - known as
Timing Noise

J193342134 (Wrms = 22.487 us) post—fit

Either from magnetosphere or core...
Origins not understood very well.

Postfit Residual (sec)

Stochastic process as with DM - but in one
pulsar it can look just like gravitational
waves (below).

Residuals (sec)
Residuals (sec)
Residuals (sec)
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Data Challenges
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Fig: Shannon et al 2016

Timing Noise from the core:
<- Vela (Young slow pulsar)

Glitches - sudden changes in rotation rate
Accompanied (in this case)by long
(~1000 day) decays

Maybe associated with the fransfer of
angular momentum between the superfluid
Inferior and solid crust of the neutron star.

Common in young pulsars
But two glitches found in millisecond pulsars



Data Challenges

Glitch in the MSP
JO613

McKee et al 2016

0.6
49000 50000 52000

Sounds like bad newse
Glitches are not so hard.

Put it in the model, decreases long term sensifivity,
but at least somewhat deterministic.



Data Challenges

10 05 1

o oasezro | | Timing Noise from the magnetosphere:
- 4 Less extreme: Switching to different states

Observe change in pulse shape:
Rate of energy loss is different
different spin down rate

10 0.5

10 0.5

d) B0740—-28

Relative Pulse Flux Demnsity
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Data Challenges

But:

Profile change can lead o

‘fiming noise’ in the arrival times due
to mismatch between template and

profile data.
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<- Simulation

Change in pulse shape lead to
observed timing noise when
comparing profile to stationary model.

Profile
Amplitude (%)

Profile
Residual (%)

Black curve = signal from GWs at
512 600 424 512 600 424 512 current upper limit.

Profile Bin Profile Bin Profile Bin

Red = residual induces from < 1%

Fig: Lentati & Shannon 2015 QR = Protie shape



Data Challenges

Time-correlated profile change seen in young pulsars a lot
Recenftly seen in a millisecond pulsar too.

The shift in the residuals isn't an actual shift. Just mismatch
between template and data. (Shannon et al 2016, Liu et al
2015)
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Fig: Shannon et al 2016 T (yr)



Data Challenges

Ditferent approach: Profile domain timing

Don't make time of arrivals.

Simultaneously estimate model for profile and pulsar fiming
parameters.

Decouple shape change from shifts.
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Fig: Shannon et al 2016 ' o7



From Earlier This Week:

-— -

Model \’ Data (With
(Prediction) { Noise)
§

\

Residual =
Data - Model

O
-
9
o
o)
s

>

Time (milliseconds to seconds)



Don't have to make ToAs.
Just work directly with the profile data.

- -

Model \’ Data (With
(Prediction) ~ Noise) Stop Here
Nk\

Residual =
Data - Model

>

Residual

Time (milliseconds to seconds)



Profile Domain Timing

Sample from the Timing Model:
Tells you when you expect your pulses

c

- Include model for profile:

= Evaluate this where your timing model
F tells you to.

2 Can include:

E

e

profile evolution,
shape variation

Log-Likelihood is then:

Sum over Profiles : (Profile data - Profile model)A2/(Profile noise)/2



E.g. PSR JO437

Profile Residuals: Very significant in most observations.




Data Challenges

Need 1o be accurate:
Shift due to GWs is only

a tenth of a phase bin.

Standard fiming
approach makes it
difficult/impossible to
distinguish timing noise
due to shifts, from

2L fiming noise due o

Fig: Lentati & Shannon 2015 ChGﬂgiﬂg profile o[gle
mismatched template.

Arbitrary Flux




Data Challenges (Last One)

Bue D421 PPTA Iimit as a function of time:
edq. - o a
Dashed line = Theoretical decrease for
noise only

Different colours are different models for
the Solar System (JPL Ephemeris)

Limits now depend on this |

2010 2012 2014 2C16

Year



Data Challenges (Last One)

Simulated arrival times over > 40
years

Simulated in DE418 and measured
in DE421

Looks like Saturn..

Cool! But Annoying..






Disneyland on Saturday”?







