
Bayesian Techniques In 
Pulsar Timing

LINDLEY LENTATI 
CAMBRIDGE UNIVERSITY 



Overview
Part 1: 

Baye’s Theory - Terminology 
Methods 
Examples 

Part 2: 

Noise in pulsar timing - Intrinsic (Glitches, Timing Noise) 
         The Interstellar Medium 
         Systematics 
         The Solar System 
         … 
          



Part 1: 
Bayesian Statistics



Bayesianism and Frequentism
Start at the heart of it.. 

Asks two different questions: 

Frequentist:   
 What is the probability of my data, given my model? 
 Assumes model is fixed – data random variable 

Bayes: 
 What is the probability of my model, given my data? 
 Assumes data is fixed – model is random variable 



Bayes Equation
The Likelihood

The EvidenceThe Posterior

The Prior



Likelihood

P(D | M) : Probability of the data given the model 
(The frequentist bit) 

Most typically just Gaussian chi-sq: 

E.g. for independent data points: 
d = data 
m = model 
o = error on the data 

       P(D | M) = exp(-0.5(d-m)^2/o^2) 



Prior

P(M) : The probability of our model parameters before we do 
the experiment. 

Many different choices: 

Uniform in the parameter 
Uniform in the log of the parameter 
Gaussian with mean and error 
+ … 



Prior
Different priors can lead to very different results. 
Consider fitting for 1-dim problem: amplitude of  
sine wave (10) in some noisy data. 
Not usually a problem in high signal-to-noise cases. 
Here the data can update our current knowledge: 

3 Priors: 
Uniform in amplitude (red) 

Uniform in log-amplitude (green) 
Gaussian (blue)

Results are consistent: 
E.g. consider Gaussian prior: 

9.5 +/- 5 

Probable range in posterior is 
10.17 +/- 0.14 

Prior decreases log-likelihood by 1 for 
change in parameter value that is  
huge compared to that inferred  

by data  



Prior
Different priors can lead to very different  
results. 
In the Low signal-to-noise case things  
are not so simple. 

As before 
3 Priors: 

Uniform in amplitude (red) 
Uniform in log-amplitude (green) 

Gaussian (blue)

Now results not consistent



The Evidence
Used to evaluate the relative probabilities of different Hypothesis 

Evidence is the integral of the likelihood over the prior 



The Evidence
Automatically implements Occams Razor: 
A simpler model will be preferred unless the more complex one describes the data 
much better



The Evidence
Used to evaluate the relative probabilities of different Hypothesis 

Evidence is the integral of the likelihood over the prior 

Define a ‘Bayes Factor’ 



The Evidence



• Consider 2d problem –  
• Probability density for parameters 
    A and B.

‘Marginalisation’

Key to Bayesian analysis:  Integrate over ‘nuisance’ parameters:   
  Things you don’t care about but that affect the answer you want to get.



• Can marginalise numerically after sampling

Integrate over A to get the probability of B

‘Marginalisation’



Integrate over B to get the probability of A

• Can marginalise numerically after sampling

‘Marginalisation’



•  Can also marginalise analytically 

 
 

‘Marginalisation’



‘Marginalisation’

Volume Matters

For uniform priors:  P(M | D) = P(D | M). 
Doesn’t mean Frequentist and Bayesian results will agree.



Sampling
Said we want to calculate P(X |D, M) 
  

Non-trivial for non-trivial problems 

Have to sample from posterior



Markov-Chain Monte-Carlo
Markov chain – sequence of state changes that 
depends only on the most recent states, not the states 
that preceded them. 

Simple example (from Wikipedia) 

Probability of the weather. 



Markov-Chain Monte-Carlo
P(Tomorrow is Sunny | Today is rainy) = 0.5 
P(Tomorrow is rainy   | Today is rainy ) = 0.5 

P(Tomorrow is rainy   | Today is sunny) = 0.1 
P(Tomorrow is Sunny | Today is sunny) = 0.9 



Markov-Chain Monte-Carlo
P(Tomorrow is Sunny | Today is rainy) = 0.5 
P(Tomorrow is rainy   | Today is rainy ) = 0.5 

P(Tomorrow is rainy   | Today is sunny) = 0.1 
P(Tomorrow is Sunny | Today is sunny) = 0.9 

P(Sun in 2 days| Sun) = P(S,S|S) + P(S,R | S) = 0.86 
P(Sun in 30 days | Sun) = ……………………...= 0.833 
P(Sun in 100 days | Sun) = …………………….= 0.833 
P(Sun in 100 days | rain) = …………………….= 0.833 



Markov-Chain Monte-Carlo
Probability of weather tomorrow depends only on the 
last few days.  

Forgets about everything previous. 

Important aspect of all samplers. 

It means that eventually we will always converge on the 
equilibrium probability no matter our starting point. 



Random walk Metropolis Hastings

 



Random walk Metropolis Hastings

Has its problems: Convergence rate depends on step size 

Just right Too small Too bigStep Size:



Random walk Metropolis Hastings

But will get there eventually 

Just right Too small Too bigStep Size:



Random walk Metropolis Hastings
For simple problems though it is all you need. 
E.g. Unit Square: 



Random walk Metropolis Hastings

Quickly becomes insufficient  for more complex problems:  
2D covariant parameters 



Random walk Metropolis Hastings
Adaptive Metropolis much better solution. 
Adapts step size to decrease autocorrelation length. 



Metropolis Hastings

Generally very poor for multi modal problems: 

 If step size allows jumps between modes, 
 it will be too big within each mode. 

 If step size small enough to explore individual modes, 
 it wont step between them.



Nested Sampling (Skilling 2004)

Solves a lot of these problems

Draw N points Uniformly from the prior 
Lowest likelihood point = L0 

Draw a new point with likelihood Li 
If Li > L0 replace point with the new point 

Otherwise try again



Nested Sampling (Skilling 2004)

The Challenge: 
Draw new points from within the hard boundary L > L0 

Mukherjee (2005): Use ellipses to define the boundary 

Still wasn’t great for multi-modal problems. 



MultiNest (Feroz & Hobson 2008)

At each iteration: 
Construct optimal multi-ellipsoidal bound 
Pick ellipse at random to sample new point



MultiNest (Feroz & Hobson 2008)

Works great for multi-modal problems:



E.g. Gaussian Shells:

Start by sampling uniformly from prior in 2-dim:



E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards in likelihood



E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards in likelihood



E.g. Gaussian Shells:

Then algorithm ‘nests’ upwards in likelihood



E.g. Gaussian Shells:

After sampling you have your posterior probability 
distributions.



Polychord (Handley & Hobson 2015)

Successor to MultiNest. 

Still uses nested sampling. 

Works in much higher dimensions (up to ~ 150) 



Nested Sampling

Dimensionality still a problem 
Volume in a hypercube is dominated by the edge 



Hamiltonian Monte Carlo

Very Different approach to sampling. 
  
Able to sample millions of dimensions. 

Uses gradient information to evolve the system using 
Hamiltonian mechanics. 

Define Hamiltonian as:



Hamiltonian Monte Carlo
More complicated –  but reduces random  walk



Hamiltonian Monte Carlo
More complicated –  but reduces random  walk



Hamiltonian Monte Carlo
Downside:  Lots of tuneable parameters still (1 mass per parameter). 

‘Guided’ Hamiltonian sampling solves this (Balan et al in prep) 

 Uses Hessian to define a step size matrix, accounting for correlations 
 In principle leaves only 1 tuneable parameter (overall step size). 

Can still require ‘tuning’ runs if the Hessian is a poor approximation to 
the true likelihood. 

Ideally would like some kind of adaptive hamiltonian monte carlo 
(anyone?) 



Part 2: 
Data Problems 

(Or why we havn’t detected 
gravitational waves yet)



What can we say about pulsars?

They are very precise clocks.



This is the crab  
pulsar     ! 

Radiation from the  
pulsar creates shocks 
That are felt for  
~ 10 light years

Fig: NASA

are very precise clocks
Some
Pulsars



But Crab not a stable 
rotator: 

Period of rotation has 
significant variation with 
time 

No good for GW science.

2 Lyne et al.

Table 1. Measured braking indices for young pulsars

PSR n Reference

B0531+21(Crab) 2.51(1) Lyne et al. (1993)
B0540−69 2.14(1) Livingstone et al. (2007)
B0833−45(Vela) 1.4(2) Lyne et al. (1996)
J1119−6127 2.684(2) Weltevrede et al. (2011)
B1509−58 2.839(1) Livingstone et al. (2007)
J1734−3333 0.9(2) Espinoza et al. (2011b)
J1833−1034 1.857(1) Roy et al. (2012)
J1846−0258 2.65(1) Livingstone et al. (2007)

haviour and have their origin in the neutron star interior
(Espinoza et al. 2011c).

Because of these effects, values of braking index have
been reliably established for only eight pulsars. For the Crab
pulsar, ν̈ has been measured between glitches (Lyne et al.
1993), leading to an observed value nobs = 2.51(1), signif-
icantly less than the value of n = 3 expected for braking
by magnetic dipole radiation. The same is true for all the
other seven pulsars (Table 1). These results indicate that
the physical process causing the slowdown is not just simple
dipolar electromagnetic radiation.

In this paper we report on the measurement and anal-
ysis of the rotation rate of the Crab pulsar from 1968 to
2013. This 45-year time-baseline amounts to about 5% of
the pulsar lifetime and allows the spin-down of the Crab
pulsar to be described over a period which includes many
glitches and provides more details of the cumulative ef-
fect that they have on the long-term spin-down (Lyne et al.
1993; Smith & Jordan 2003). Elsewhere, the same data have
been used to examine the statistics and physical details of
the glitches (Espinoza et al. 2014) and to study the evolu-
tion of the radio pulse emission over this time (Lyne et al.
2013) to enable a comprehensive picture of the evolution of
the pulsar.

2 OBSERVATIONS AND BASIC ANALYSIS

The rotation of the Crab pulsar has been monitored by daily
observations at Jodrell Bank Observatory since 1984, mainly
using the 13-m radio telescope at 610 MHz (Lyne et al. 1988,
1993). Regular observations with the 76-m Lovell telescope
at around 1400-1700 MHz, designed to monitor any changes
in dispersion measure, also contribute to the dataset.

These data have been supplemented with earlier ob-
servations taken at Arecibo (Gullahorn et al. 1977) and in
the optical at Princeton (Groth 1975) and Hamburg (Lohsen
1981). There are no observations available between February
1979 and February 1982, this being the only significant gap
with no data. There are in total appproximately 11,000 times
of arrival (TOAs) and together the measurements comprise
a record of the rotation of the pulsar over a total of 45 years
from November 1968 to December 2013.

In order to study the long-term rotational history of
the pulsar, we have used standard procedures to reduce the
TOAs to the barycentre of the Solar System. We have then
fitted values of the rotation frequency ν and its first two
derivatives ν̇ and ν̈ over time spans of approximately 100
days. Such analyses were repeated with the central reference
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Figure 1. The spin-frequency history of the Crab pulsar over
45 years. (a) The observed spin-frequency ν determined from fits
to 100-day data sets every 50 days, showing the monotonic slow-
down of the pulsar. (b), (c) and (d) The frequency residuals δν

after fitting to the values in (a) simple slow-down models involv-
ing frequency and respectively one, two and three spin-frequency
derivatives in the Taylor Series of equation (5). The fitted values
of ν0, ν̇0, ν̈0 and

...
ν 0 for (d) are given in Table 2.

time advancing by typically 50 days between analyses. Close
to glitches, the time spans were adjusted in such a way that
no analysis was performed over a glitch, so that one analysis
ended and another started close to the epoch of the glitch.

These time sequences of rotational frequencies and first
derivatives provide the main forms of the data that we use
to study the long-term behaviour of the pulsar in this pa-
per. Figs. 1a and 2a illustrate the evolution of the rotational
frequency ν(t) and slowdown rate ν̇(t) over the 45 years.
The rotational slowdown of the pulsar is evident in Fig. 1a,
falling by about 0.5 Hz during this time. The slowdown rate
(Fig. 2a) also shows a general reduction in magnitude with
time, but there are also considerable long-term effects re-
sulting from glitches, which we investigate further in a later
section.

Following convention, it is instructive to characterise
the variation in rotation frequency with time as a Taylor
series of derivatives of the form:

ν(t) = ν0+ν̇0(t−t0)+
1
2
ν̈0(t−t0)

2+
1
6

...
ν 0 (t−t0)t

3+δν(t).(5)

c⃝ 2014 RAS, MNRAS 000, 1–9

Fig: Lyne et al 2014

are rubbish clocksMost
Pulsars



Data Challenges

<- 100 ns white noise  
(as per early predictions)

Residuals:  
Subtract expected time of  
arrival from actual time. 
<- 100ns white noise 

Actual data: 
J0437-4715 
(one of the better pulsars) 

Data challenges 
Residuals:  
Subtract expected time of  
arrival from actual time. 
<- 100ns white noise 

Actual data: 
J0437-4715 
(one of the better pulsars) 

Data challenges 

Actual Data ->
J0437-4715  
(That great one mentioned  
earlier…)



Data Challenges

In this case noise mostly due to  
the interstellar medium. 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

Dependent on 
observing 
frequency

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 



Data Challenges
Model signal statistically - 
Scale with observing frequency 
(You’ll be doing this later) 

Data challenges 
Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

50cm 

20cm 

10cm 

Data challenges 
Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

50cm 

20cm 

10cm 



Data Challenges
But the signal isn’t stationary… Data challenges 

Void in the ISM 

Over density in the ISM 

Not Time stationary 

Data challenges 

Void in the ISM 

Over density in the ISM 

Not Time stationary 

Over density in the ISM 

Void in the ISM 

Figs: Lentati et al 2016



Data Challenges

So just increase the bandwidth right? 

Massive increase over the last few years 
Further increases to come 

~4GHz simultaneous bandwidth for 
up coming systems. 



Data Challenges
More than just DM though: 
Scattering, ‘frequency-dependent DM’ 

Can really hurt: PPTA Limits for PSR J1909-3744: 
10cm only : 1e-15 
10+20cm:    9e-16 
10+20+50:   2e-15 

Fig: Lentati et al 2016



Data Challenges

Better modelling can make a huge difference (Lentati et al 2016) 
60% increase in sensitivity compared to ‘standard’ models 

Fig: Lentati et al 2016



Data Challenges
Data challenges 

Intrinsic High Frequency 
in arrival times 
 
Known as ‘Jitter’ 
 
Better telescopes wont help 
 
Some pulsars already at limit 

Shannon et al 2014 

Intrinsic high frequency variation  
in arrival time of pulses 

Better telescopes won’t help. 

Already at the limit for some  
pulsars. 



Data Challenges

Intrinsic high frequency variation  
in arrival time of pulses 

Better telescopes won’t help. 

Already at the limit for some pulsars. 

Not necessarily Gaussian either. 

Data challenges 
Intrinsic High Frequency  
variation in arrival times 
 
Known as ‘Jitter’ 
 
Better telescopes wont help 
 
Some pulsars already at limit 
 
 
Not necessarily Gaussian 

Lentati et al 2014 
Fig: Lentati et al 2015



Data Challenges
Intrinsic low frequency variation 
in the arrival times (like Crab) - known as  
Timing Noise 

Either from magnetosphere or core… 
Origins not understood very well. 

Stochastic process as with DM - but in one   
pulsar it can look just like gravitational  
waves (below). 

Data challenges 
Finally, Intrinsic Low Frequency  
variation in arrival times 
 
Known as ‘Timing Noise’ 
 
Either from magnetosphere, 
or core.. Origins mostly unknown 
 
Stochastic Process as with DM 
 
Individually can look just like 
Gravitational Waves 

Data challenges 
Finally, Intrinsic Low Frequency  
variation in arrival times 
 
Known as ‘Timing Noise’ 
 
Either from magnetosphere, 
or core.. Origins mostly unknown 
 
Stochastic Process as with DM 
 
Individually can look just like 
Gravitational Waves 



Phase-coherent timing of the Vela pulsar 3

filterbank and digital-autocorrelation spectrometers; these
observations are described in detail in Wang et al. (2000) and
Yu et al. (2013). Most recently, the pulsar has been observed
with digital polyphase filterbank spectrometers as part of
a programme to monitor pulsars of interest to the Fermi

gamma-ray observatory (Weltevrede et al. 2010). These ob-
servations have monthly cadence with a central observing
frequency close to 1.4 GHz and semi-annual cadence with
a dual-band system capable of observing simultaneously at
central frequencies of 0.73 and 3.0 GHz.

The primary data in this analysis are TOAs, formed
by correlating observations that have been averaged in fre-
quency, time and (where recorded) polarisation with a tem-
plate, using the commonly applied Fourier phase gradient
method, described in Taylor (1992), and implemented in
the pulsar analysis code psrchive (Hotan, van Straten &
Manchester 2004). Templates were produced individually
for each backend/observing-band combination using an an-
alytic model fitted to the average profile from that combina-
tion. O↵sets between the backends were included in the tim-
ing model, as discussed in Section 3. The cross-correlation
method assumes that the data can be described by the tem-
plate and additive white noise. For our observations, this
is not the case. Distortions of the pulse profile, especially
prevalent in older observations, are introduced both by the
high flux density (in excess of system equivalent flux den-
sity) of the pulsar, and the large dispersion sweep of the
pulsar relative to the pulse phase and frequency resolution
of the observations.

Saturation of the amplifiers, other non-linear e↵ects in
the receiver and downconversion chain, and low-bit digiti-
sation can lead to artefacts in the pulse profile, such as
apparent negative flux density on the leading and trailing
edges of the pulse (Jenet et al. 1998). Older observations
were recorded with analogue-filterbank spectrometers with
single-bit digitisers and were especially susceptible to these
artefacts. Additionally, the pulse profile can be artificially
broadened if the dispersive delay across an individual chan-
nel bandwidth is larger than the pulse-phase resolution of
the observation. Given the relatively narrow pulse (2.1 ms),
and relatively high dispersion measure (68 pc cm�3), older
observations conducted with wide channels at low frequency
show this type of broadening. Even in more recent observa-
tions where instrumental e↵ects are minimised, stochasticity
in the pulse shape introduces additional timing error (re-
ferred to as pulse jitter, Cordes & Downs 1985) that limits
the timing precision of the observations. The e↵ects of all of
these distortions are secondary to TOA variations induced
by timing noise and glitch events. It is however necessary to
account for these e↵ects in the analysis, in particular when
modelling transient glitch components in our sparsely sam-
pled data set. While we do not account for them while mea-
suring TOAs (Lentati & Shannon 2015), we account for their
e↵ect in the pulsar timing model, as discussed in the next
section.

3 TIMING ANALYSIS

The presence of strong timing noise and glitch events make it
di�cult to produce phase-connected solutions over long data
spans for young, energetic pulsars like the Vela pulsar. As

Figure 1. Residual arrival times for maximum-likelihood
models of the Vela pulsar, measured in units of time �t
and cycles of phase �P . The stars show the epochs of the
glitches. a: Only fitting for the spin frequency and frequency
derivative. b. Fitting for the glitches but assuming power-
law noise. c: Modelled glitch signal from solution presented
in panel b. d: Whitened residuals for maximum-likelihood
solution. e: Dispersion measure variations for the maximum-
likelihood solution

::::
(solid

::::
line)

:
.
:::
The

:::::::
dashed

:::
line

::::::
shows

:::
the

::
1�

:::::::::::
uncertainties

:::
on

:::
the

:::::::::
realisation.

the data spans increase, the amplitude of timing-noise signal
increases rapidly (with the timing noise having a power spec-
tral density Pr(f) / f�5±2 across the population, Shannon
& Cordes 2010), and relative to a spin period and period
derivative at some fiducial epoch, the arrival times diverge.
Even if an initial phase-connected solution exists, it typi-
cally has hitherto been di�cult to fit the solution because

c� 2015 RAS, MNRAS 000, 1–10

Data Challenges

Timing Noise from the core: 

<- Vela (Young slow pulsar) 

Glitches - sudden changes in rotation rate 
Accompanied (in this case)by long  
(~1000 day) decays 

Maybe associated with the transfer of  
angular momentum between the superfluid  
interior and solid crust of the neutron star. 

Common in young pulsars 
But two glitches found in millisecond pulsars 

Fig: Shannon et al 2016



Data Challenges

Sounds like bad news? 
Glitches are not so hard. 
Put it in the model, decreases long term sensitivity,  
but at least somewhat deterministic. 

Glitch in the MSP 
J0613 
McKee et al 2016 



Data Challenges

Timing Noise from the magnetosphere: 
Less extreme:  Switching to different states 

Observe change in pulse shape: 
Rate of energy loss is different 
different spin down rate 

Figure 3:

17

Figure 4:

18

Figs: Lyne et al 2010



Data Challenges
But: 
Profile change can lead to  
‘timing noise’ in the arrival times due  
to mismatch  between template and  
profile data. 

<- Simulation 

Change in pulse shape lead to  
observed timing noise when  
comparing profile to stationary model. 

Black curve = signal from GWs at  
current upper limit. 

Red = residual induces from < 1%  
change in profile shape 

Profile Stochasticity in PSR J1909�3744 3
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Figure 2. (Top) Black line - Simulated residuals due to a GW signal from an isotropic stochastic background with an amplitude of 1 ⇥ 10�15, consistent with
the most stringent 95% upper limits set by Shannon et al (2015). TOAs were simulated using the highest signal to noise profile in the PSR J1909�3744 dataset
used in Section 6, resulting in uncertainties of 20ns for each observation. Red line - Simuated residuals induced by the passage of an additional Gaussian
component to the profile data (see bottom panels), not included in the template at the time of forming the TOA, with an amplitude of 0.5% that of the observed
profile. The two signals are of comparable amplitude, implying that any unmodelled profile variation larger than this will quickly dominate over a GW signal
in the TOAs. (Bottom) 3 examples of the additional Gaussian component at di↵erent positions in the main profile, and residuals from the profile fit.

in the arrival time of the deterministic profile – as well as shape
variation that could be of instrumental, or astrophyical origin. As
such we will include below an overview of the basic framework,
before providing details on the modifications required to incorpo-
rate profile stochasticity.

2.1 Shapelets

A thorough description of the Shapelet formalism can be found in
Refregier (2003), with astronomical uses being described in e.g,
Kelly & McKay (2004); Lentati et al. (2013); Refregier & Bacon
(2003). Here we give only an outline to aid later discussion.

Shapelets are described by a set of dimensionless basis func-
tions, which in one dimension can be written as:

�n(x) ⌘
h
2nn!
p

2⇡
i�1/2

Hn

 
xp
2

!
exp

 
� x2

2

!
, (1)

where n is a non-negative integer, and Hn is the Hermite polyno-
mial of order n. Therefore the lowest order shapelet is given by a
standard Gaussian (H0(x) = 1), with higher order terms represented
by a Gaussian multiplied by the relevant polynomial.

These are then modified by a scale factor ⇤ which is a free
parameter to be fitted for, in order to construct dimensional basis
functions:

Bn(x;⇤) ⌘ ⇤�1/2�n(⇤�1 x). (2)

These basis functions are orthonormal, i.e:
Z 1

�1
dx Bn(x;⇤)Bm(x;⇤) = �nm, (3)

where �nm is the Kronecker delta, so that we can represent a func-
tion s(x) as the sum:

s(x, ⇣,⇤) =
nmaxX

n=0

⇣nBn(x;⇤), (4)

where ⇣n are the shapelet amplitudes, and nmax the number of
shapelet basis vectors included in the model.

In our analysis of pulsar timing data, we form a single profile
shape, which will then be scaled from epoch to epoch. We therefore
redefine Eq. 4, such that we have a single global amplitude A, and
nmax � 1 parameters ⇣n which are the amplitudes for the shapelet
components that have n > 0. These therefore represent the relative
contribution to the overall profile shape, relative to the zeroth-order
term, which we take to have an amplitude of 1. Written in this way
Eq. 4 becomes:

s(x, A, ⇣,⇤) = A
nmaxX

n=0

⇣nBn(x;⇤). (5)

Finally, the total integrated flux in the model profile, Ftot, is
given by

c� 0000 RAS, MNRAS 000, 000–000

Fig: Lentati & Shannon 2015



Data Challenges
Time-correlated profile change seen in young pulsars a lot 
Recently seen in a millisecond pulsar too. 
The shift in the residuals isn’t an actual shift.  Just mismatch 
between template and data. (Shannon et al 2016, Liu et al 
2015) 
 

Fig: Shannon et al 2016



Data Challenges

Different approach: Profile domain timing 
Don’t make time of arrivals.  
Simultaneously estimate model for profile and pulsar timing 
parameters. 
Decouple shape change from shifts.

Fig: Shannon et al 2016



From Earlier This Week:



Don’t have to make ToAs. 
 Just work directly with the profile data.

Stop Here



Profile Domain Timing

Sample from the Timing Model: 
Tells you when you expect your pulses 

Include model for profile: 
Evaluate this where your timing model 
tells you to. 
Can include:  

profile evolution,  
shape variation 

  

Log-Likelihood is then: 

Sum over Profiles : (Profile data - Profile model)^2/(Profile noise)^2



E.g. PSR J0437

Profile Residuals: Very significant in most observations.



Data Challenges

Need to be accurate:  
Shift due to GWs is only 
a tenth of a phase bin. 

Standard timing 
approach makes it 
difficult/impossible to 
distinguish timing noise 
due to shifts, from 
timing noise due to 
changing profile and 
mismatched template.

2 L. Lentati et al.
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Figure 1. Noiseless model for the deterministic profile of PSR J1909�3744
at zero phase (black line), and after being shifted by 100ns, equivalent to
the e↵ect of a passing GW from a 10�15 isotropic GWB (red line). In the
PSR J1909�3744 10cm dataset described in Section 6 this corresponds to,
at best, ⇠ 1 tenth of a phase bin.

files. Alternatively, rather than use the averaged data, a smoothed
version of the template can be used (e.g. Demorest et al. 2013), or
analytic functions can be fit to the averaged profile to form a noise
free template (e.g. Manchester et al. 2013).

Once a template has been developed it is then used to form the
TOAs for each observational epoch. This is most commonly done
via the ‘Fourier phase-gradient method’ (Taylor 1992) in which the
phase o↵set between the two is computed using the Fourier trans-
form of both the template, and the profile at each epoch, and a cross
correlation between the two performed. Alternative time domain
approaches have also been used (e.g. Hotan et al. 2005), however
regardless of the approach, they all share a common assumption;
that the profile is stable within radiometer noise from epoch to
epoch.

While long term stability of pulse profiles has been shown in
some pulsars (e.g. Shao et al. 2013), epoch to epoch variation in the
profile shape has also been observed. For example, a study of mor-
phological variability in PSR J1022+1001 suggests that the pulse
profile varies at the few per cent level (Hotan et al. 2004), while
PSR J0437�4715 has also been observed to show timing instability
(Hotan et al. 2006). In both cases the origin of the instability could
be instrumental, for example, due to polarization calibration errors,
or it could be the results of the intrinsic stochasticity of the pro-
file. The individual pulses from a pulsar are known to show a high
degree of variability (e.g. Hankins & Cordes 1981), and so as in-
strumentation improves and radiometer noise decreases, this intrin-
sic stochasticity will unavoidably become more significant within
a single observation. Profile variability has also been oberved in
young pulsars, where in some cases timing noise has been found
to be correlated with changes in the pulse shape (Lyne et al. 2010).
Pulse profile variability associated with instrumental distortions has
also been widely observed, particularly in jitter-dominated obser-
vations of young pulsars or with instruments with low-bit digi-
tisation (Jenet & Anderson 1998). Typically the e↵ects of these
distortions have been modelled in the TOA domain. This is done
both by including additional white noise parameters re↵ered to as

‘EFAC’ and ‘EQUAD’, which scale and add in quadrature to the
formal TOA uncertainties, and by incorporating a model for low
frequency timing noise into the analysis (e.g. Lentati et al. 2014;
van Haasteren & Levin 2013; Coles et al. 2011). This has the dis-
advantage that in a single pulsar these distortions could be covariant
with the GW signal (see Figure 2).

In the top panel of Fig. 2 we compare simulated residuals in-
duced by the GW signal from an isotropic stochastic background
with an amplitude of 1 ⇥ 10�15 (black line), with those that result
from the passage of an additional Gaussian component through
the profile, with an amplitude of 0.5% that of the observed pro-
file, which is not appropriately modelled by the single average
profile used to form the TOAs (see bottom panels). All TOAs
were simulated using the highest signal to noise profile in the PSR
J1909�3744 dataset used in Section 6, resulting in uncertainties of
20ns for each observation. The two signals are of comparable am-
plitude, implying that any unmodelled profile variation larger than
this will quickly dominate over a GW signal in the TOAs.

In Lentati et al. (2015) (henceforth L15) a Bayesian frame-
work was introduced dubbed ‘Generative Pulsar Timing Analysis’
(GPTA) that allows for a full timing analysis using the folded pro-
file data, rather than the SATs that result from the cross correlation
with a profile template. This allowed for analysis of the pulsar’s
timing model, along with intrinsic stochastic processes such as spin
noise – low frequency variation in the pulse TOAs – simultaneously
with a model for the pulse profile, for which a shapelet basis was
used.

In this work we extend this framework to incorporate epoch
to epoch changes in the profile. We include a model for pulse jit-
ter – high frequency stochastic variation in the arrival time of the
profile model – along with models for variations in the shape of
the profile, which we obtain by calculating the power spectrum of
the variance in our shapelet model as a function of scale in phase
space. While this doesn’t constitute a physical model for the epoch
to epoch stochasticity, by obtaining the power spectrum of the vari-
ations, we can begin to characterise the shape changes in a statisti-
cally robust manner, ultimately leading to a better understanding of
their origins.

In Sections 2 to 5 we describe the models used in our pro-
file domain analysis, and how we implement them in our Bayesian
framework. In Section 6 we describe the 10cm PSR J1909�3744
dataset that we use to construct our simulations described in Sec-
tion 7, and that we use in our analysis in Section 8. Finally we o↵er
some concluding remarks in Section 9.

2 A PROFILE DOMAIN MODEL

The methods used in this analysis are drawn from those presented
in L15. Here, our pulsar timing analysis is performed entirely with
the profile data, rather than the TOAs formed from those profiles.
Qualitatively, in each likelihood calculation, we construct a model
for the determinstic (or average) profile using a shapelet basis, and
generate a model time of arrival at each observational epoch for
that profile using the pulsars timing model. Both these steps oc-
cur simultaneously, such that both the parameters that describe the
shapelet model, and the timing model parameters are free to vary
within our analysis.

While a full description of the general framework we will use
is available in L15, in this work we will be extending the method-
ology significantly to incorporate the possibility of epoch to epoch
variation in the profile. We include models for pulse jitter – a shift
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Data Challenges (Last One)

PPTA limit as a function of time: 
Dashed line = Theoretical decrease for  
noise only 
Different colours are different models for  
the Solar System (JPL Ephemeris) 

Limits now depend on this :( 

Fig: Ryan Shannon



Data Challenges (Last One)

Simulated arrival times over > 40 
years 

Simulated in DE418 and measured 
in DE421 

Looks like Saturn.. 

Cool! But Annoying..
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One (Unrelated) Last Thing!



Disneyland on Saturday?



On to the workshop!


