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Once upon a time...




Far far away...




In the Galaxy...




We found a pulsar...




WVell...in fact...there are many of them!
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Up to 22/06/20 I 7 thereqre over 2600 pulsars
that have been discovered “officially”.




What are pulsars?




Pulsars

Externally, pulsars are:

* Fast-rotating magnetic dipoles;

* Emitting electromagnetic wave at radio
wavelength / X-ray / y-ray...;

* Cosmic “light houses”;
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Pulsars

Externally, pulsars are:

* Fast-rotating magnetic dipoles;

* Emitting electromagnetic wave at radio
wavelength / X-ray / y-ray...;

* Cosmic “light houses”;
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Internally, pulsars are:

* Small objects, ~¥20 km in diameter;
* Heavy objects, ~1 solar mass;

* Multi-layer structure;

 Commonly believed to be neutron stars;

Inner crust:
ion lattice, soaked in
Thin atmosphere: superfluid neutrons

H,He,C... \

Outer crust:

~nuclear density
~0.2 nucleons fm™3

3 ~2X nuclear density

“10‘59cm'3 Credit: B. Link



Integrated pulse profile: pulsar’s fingerprint

* Pulsar produces periodic pulsation signals -> often too weak to detect;

* Fold / Integrated pulsar signals with respect to its rotational period -> increase signal
quality and form integrated pulse profile;
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* Pulsars are distinguished by their integrated pulse profiles (not by their names!) -> all

pulsars have their unique profile shape, just like human’s fingerprint!
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Integrated pulse profile: pulsar’s fingerprint
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Integrated pulse profile vs single pulses
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* Integrated profiles are seen to be e
PSR 1133 + |

consistent from different observations AVERAGE

and in general stable in time;

* Pulse emissions from each individual 100 —
rotations, i.e., single pulses, are seen to

be highly variable from pulse to pulse!
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Integrated pulse profile vs single pulses
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* Integrated profiles are seen to be
consistent from different observations AVERAGE

and in general stable in time;

* Pulse emissions from each individual 100

rotations, i.e., single pulses, are seen to

be highly variable from pulse to pulse!

50

* Variation of single pulses can be both

stochastic and systematic (periodic

PULSE NUMBER

intensity modulation, drifting sub-pulse,

mode-changing, nulling, etc.);

TIME (ms)

Credit: A. Lyne




Pulsar signal and dispersion delay

* In between the pulsar and the earth, there is

1500

interstellar medium (ISM), containing cold

plasma of ionized free electrons, etc.;

1400

* Electromagnetic waves in radio frequency

propagating through the ISM will endure a

Frequency (MHz)
Channel Number

time delay (smaller group velocity) depending

1300

on their frequencies.

* The difference in time delay between signals

at two different frequencies are given by: /1

Ve \ —2 ( Vhi )—2 DM
t = 4.15 ms -
At =415 ms x [(GHZ) GHz ] 8 <Clll_3 pc

where the dispersion measure (DM) is defined by the column density of free electrons
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P-Pdot diagram and classification
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Formation and evolution of binary pulsar

primary secondary

Credit: D. Lorimer | * Binary pulsar in the end:

runaway star . 1). Mildly recycled pulsars (P
¢ 4 | > 20 ms) with heavy
NS binary disrupts N companion (neutron star);
/wwmpm /young pulsar . 2). Fully recycled pulsars (P <
binarytumves iy recycled pulsar | 20 ms), i.e., MSPs, with
\/ | light companion (white
\ young pulsar, dwarf);
¢ binarydisru.ﬂ/s //‘< ' 3). Pulsar-black hole possible;

secondary evolves
(Roche Lobe overflow)

NS * Companion of binary
high-mass system \ Woomph! l )
— o~ pulsars found so far: white
\
¢ | dwarf, neutron star, pulsar,

main-sequence star,

low-mass system binary survives |

\ | planet;
AN N ' Only black hole missing!

millisecond pulsar - white dwarf binary double neutron star binary




Pulsar timing



The first principle of timing experiment

Phase-connected timing solution: Credit: D. Champion

Session i

I ;‘\w ‘I‘ ‘\ ‘f\/ ‘f } )’\:“v(
| TRV, I‘ ]
will jA U( / Il

)|

TOA

l y fold
model

Session j

’\ 4’\’ ‘ 4\ f

JLMMMHLAUJM

reS|d ual

PSR J1012+5307: P=0.0052557490101970103(19) s (Desvignes et al. 2016);

<- By counting all pulses (3 x 1013 rotations!!) in 20 years!!



Time transformation in timing experiment

* Pulse phase / “counts” of pulses at pulsar proper time:

pn—

b=  —

n>1

D

(£ = )" + o

The fractional part of ¢(t) is the timing residual.

its proper time!

* Top-level timing formula:
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Time model

* Components of time transformation:

A@ :AA+AR®+AP+AD@+AE®+A§@
Ars = Avyp + Aisp + Arpp + Ags
Ap = Arp + Aap + App + Agp

[ Edwards et al. 2006 |

* Timing model parameters:

a). Spin parameters: period, period derivative, glitches, spin noise, ...

b). Astrometry parameters: RA, DEC, proper motion, parallax, ...

c). ISM parameters: DM, derivative(s) of DM, ...

d). Keplerian binary parameters: orbital period (P, ), projected semi-major axis (x),
longitude of periastron (w), eccentricity (e), epoch of periastron passage (T);

e). Post-Keplerian (relativistic) parameters: advance of periastron (w), second Doppler &

gravitational time dilation (Einstein delay, y), orbital decay (Pb), curvature of

space-time (Shapiro delay, sin i, M,), variation of projected semi-major axis (x), ...



To better understand the gravitational time dilation...

One hour on this
planet is 7 years on
Earth...

Great!

| will do my PhD here. =




Timing residuals

* For the N;th TOA, given the values of the timing parameters, one can calculate its
corresponding timing residual in pulsar proper time, by subtracting the integer part

of ¢; (number of rotations):

Note: You may well have ambiguity of an integer number (i.€., lose coherency in pulse

phase) if the initial values of the timing parameters are not good enough to keep

residuals within + half a period;

* The timing parameters are fitted based on a linear singular-value decomposition,

weighted least-squares algorithm, minimising:
N R 2
2 _ -
r = Z <Ui >
1=

* The timing residuals are supposed to be Gaussian / white noise when the model &

model parameters describe the data perfectly.



Timing stabilities

Canonical Pulsars Millisecond pulsars
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Testing General Relativity with pulsar timing

Cumulative shift of periastron time (s)
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The double-pulsar system
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The most constraining test of General
Relativity (better than 99.95%) !




Constraining alternative theory of gravity

* Alternative theories of gravity

predict a variety of deviations

LLR

from General Relativity.
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components (e.g., NS-WD):

[ Freire etal. 2012 ]



The gravitational wave astronomy

* Gravitational waves are:
a). Ripples in the curvature of space-time propagating as a wave;

b). Predicted by General Relativity and alternative theories;

87
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c). Indirect evidence found from the Hulse-Taylor pulsar’s orbital decay;
d). Direct detection can be from both stochastic background (GWB) and

single sources (e.g., supermassive black hole pairs);

History of the Universe

e). Window now opened by the LIGO detection!

Inflation
Generates
Two Types of
Waves

* The GWB: e

a). Generated from the early universe !

Quantum
Fluctuations

b). Origin of major component: still not clear !

Nuclear Fusion Begins
Modem Universe

(large number of supermass black hole
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Detecting gravitational wave with a pulsar timing array
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Gravitational wave experiments with PTA

* Detect gravitational wave / place an upper limit on GWB can:

a). Constrain cosmological models of supermassive black hole population;
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b). Constrain string tension of cosmic strings and models of the early universe;

c). Measure properties (e.g., polarisation, speed) of gravitational wave and test General

Relativity;



Processing pulsar data

to obtain pulse time-of-

arrival




The pulsar timing signal chain
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Signal with polarisation
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Reference Credit: R. Karuppusamy

* Pulsar EM signal usually has significant polarisations
(specific orientation of oscillation during propagation);

* The signal can be fully represented by sampling in dual

polarisation on either linear or circular basis, and is

detected in the form of stokes parameters (I, Q, U, V);
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* Calibration needed to obtain the original polarized signal

il

(correct for feed rotation & receiver imperfection):

ly Polarized] "= JoJ M=A(J®J)A!
Credit: wikipidia P p ( ) '




Radio interference

» Radio interference (RFI) is common in observations of Radio Astronomy!
* Terrestrial artificial radio signal, many possible origins: satellite, plane, radio broadcast,
wifi, cell phone, lightening, mircowave, ...

* "Most common” feature: strong, narrow band, time-variant, with zero DM, appear in

multiple beams (if any) simultaneously (near-field), ...

Freq: 1347.500 Mdz gth: 1280.000 S/N: 249.510

«l
Q
=
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0.4 0.6
Pulse Phase

" Pulse Phase

Data needs to be cleaned to minimize systematics !!!




Measuring TOA with template-matching

* Expected uncertainty of TOA given the signal-to-noise (S/N) of detection of the

integrated profile (averaged N pulses), when only radiometer noise (white noise) is

on top of the profile:

Om = ; é B= \//[U/(f)]zdf
BxS/N VN [ Downs & Reichley, 1983; Liu et al., 2011 ]

* In practice, TOAs are measured by cross-correlating the integrated profile with a

template profile (normally formed from independent observations), assuming the

integrated profile is described by the template via:

t) =a+ bt — 1)+ n(t)
\ Phase offset
TOA
Integrated Baseline in Scaling Template
profile data factor brofile

* The template profile needs to be of high S/N, or noise free (analytic), or after noise-

Noise
component

removal technique.



Frequency-domain fitting algorithm

* The template-matching is normally carried out in the frequency-domain, after

Discrete-Fourier-Transform of the data:

N~—-1

P,exp (i) = X p;e?WEN
j=0
N—-1 o
S, exp (ig,) = X S]_elzmk/N
=0
* The model becomes:
P,exp (i6;) = aN+bS, expli(gy + k)] + Gy, k=0,.... (N—1),

* The parameters (b, T) are then obtained by minimising the goodness-of-fit:

N/2 _ . . 9
vib,7) = 3 P, —bS, exp[i(¢, — 05+ k7)]
k=1 Ok

* The errors are obtained from standard error propagation (covariance matrix):

S ﬁx_z -1 B o2
m\or2) 26X kEP,S, cos (¢, — 0, +kT)’

S aZXZ —1= o2 |
o\ ob? 2%.52




Frequency-domain fitting algorithm

Orpa X IN
)
=
—
(@]
=
Q
<
o
'.—
S/N < VN |
>
-
=

3.5 [
3 |
2.5 |
2 L
15
1
0.5
0

| | | |

0

0.0025
0.002
0.0015
0.001
0.0005

-0.0005

50000 100000 150000 200000

folded pulses ]
Credit: J. McKee

]

0.2 0.4 0.6 0.8 1

pulse phase




Frequency-domain fitting algorithm

Confidence level of TOA estimation

If the template profile used is not perfect,
e.g., of a different shape from the
integrated profile or of significant noise,
the accuracy of the TOA will be affected,

i.e., less than expected from theory.
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* In low S/N region, the error scales non-
linearly with S/N, and the standard error
propagation in template-matching
underestimate the uncertainty;

* There are other approaches (e.g., the FDM
method) that can be used to obtain a more

reliable error estimate.



