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Introduction: What you won'’t learn in this talk :-)

The Einstein summation convention.

The difference between a contravariant and covariant
vector.

How to calculate the Christoffel connection.

How to solve for the Schwarzschild solution.

The Canonical Quantization of the Einstein equation.
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Background (History)
Historical Introduction: Before Relativity

- Newton comparing gravity to light in a letter to Charles Boyle:
“So may the gravitating attraction of the earth be caused by the
continual condensation of some other such like ethereal spirit... in
such a way... as to cause it [this spirit] from above to descend with
great celerity for a supply; in which descent it may bear down with it
the bodies it pervades, with force proportional to the superficies of all
their parts it acts upon.”

- John Michell and Dark Stars
Philosophical Transactions of the Royal Society of London, 27 November 1783

1 GMm
L =
2 r
- Maxwell’s Equations:
€Eolo = 1/ CZ
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1 GM
it =
2 r
2GM
vV—Cc> r= = Schwarzschild Radius !!
- Maxwell’s Equations:
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Background (History)

Historical Introduction: General Relativity

- Special Relativity: Nothing can
travel faster than light.

- Minkowski Space (1907):

Special Relativity as Geometry of
spacetime.

- Can not reconcile Special Relativity
with Newtonian gravity.

- Gravity cannot travel faster
than light!

- The curvature of spacetime
is gravity...

- Differential geometry as the
necessary math, with Grossmann
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Differential Geometry Primer:
4th Grade Geometry to GR in 3 slides
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Background (Geometry)

LightCones: Encoded in the metric

r -

; M,
/. AAsTLGHT NS N
F \
L /

-

——

Jeffrey Hazboun (CIEP) GR Lecture

28 June 2014

6/35



Background (Geometry)

LightCones: Encoded in the metric

/- ASTuGHT N N
>

N\

/ / \

,
- PASTLiGHT covk \\
(

—

- Arsugnmeone N\

-

Jeffrey Hazboun (CIEP) GR Lecture

e

S
N
N\ yarcon?
\ y
oBSERVER —
s
s / . 2
S Ot
/ astuc o N\
¢ N

-

LI

\twowne g’
4
OBSERVER —
N

/- AasTuGeon N

28 June 2014

6/35



Background (Geometry)

Dot product to 7, to gy .

Uy
v=o7 = [n v vy
v,
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Background (Geometry)

The Metric
Encoding a generalized Pythagorean Theorem

Euclidean Signature Lorentzian Signature

1 0 0O -1 0 0 O
o100 _lo 100
Pasl = 1o 0 1 0 al = 1o 01 0
0 0 01 0 0 01

Differential Geometry/ General Relativity
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The Metric
Encoding a generalized Pythagorean Theorem

Euclidean Signature Lorentzian Signature

1 0 0O -1 0 0 O
o100 _lo 100
Pasl = 1o 0 1 0 al = 1o 01 0
0 0 01 0 0 01

Differential Geometry/ General Relativity
ds’ = — Cf () de? + fo(xM)dt dx + f(x*) dx®
+ ..+ OMAY + () dy dz+ fio(xH) dZ

A

[ ] _ Bunch
guvl = of

Functions
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General Relativity (Einstein Field Eqn)

Heuristic Einstein Equation
Just a Tensor Differential Equation for the metric
Matrix vs. Tensor?

- Like a generalization of a scalars, vectors and
matrices.

- But also well behaved under coordinate
transformations.

08uv azguv
v 52 ax0xP

Guv = T,,v (Matter Fields)
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General Relativity (Einstein Field Eqn)

General Relativity & the Einstein Field Equation

Spacetime Curvature = Matter/Energy Content

Matter tells spacetime
how to curve.

Spacetime tells matter
how to move.
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General Relativity (Einstein Field Eqn)

Particles follow curved lines when spacetime is curved

¢ circular orbit
e elliptical orbit
u unbound orbit
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General Relativity (Einstein Field Eqn)

Just an analogy...

UNDERSTANDING GRANTTY: | | THEY DISTORT IT SPACE-TIME 1S LKE THIS
SPRCE-TIME IS LIKE A BECAUSE THEYRE SET OF EQUATIONS, FOR
RUBBER SHEET, MASSIVE | | PULLED DOWN WHICH ANY ANALDGY MysT
OBTECTS DISTORT THE BY...WHAT? BE ANAPPROKIMATION .
SHEET, AND—

S WA,

o
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General Relativity (Experiment)

Advance of the perihelion of Mercury

- GR Kepler’s Law:
d? 3G*M?
—u—l +u="—"-—1" GRTerm
dep? 12
L2
~ GMr

Credit: WikiCommons
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General Relativity (Experiment)

Advance of the perihelion of Mercury

- GR Kepler’s Law:

- Advance in
(arcseconds / century):
Source

Precession of Equinox
Sun’s Oblateness
Perturbations of Planets
GR

Total 5601
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Advance of the perihelion of Mercury
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General Relativity (Experiment)

General Relativity in our phones.

Special Relativity
Relative speed — At slower
7 s slower per day.

General Relativity
Smaller curvature — At faster
45 us faster per day.

Net Result

Time passes 38us
faster per day.

Errors of 10 km per day.

Jeffrey Hazboun (CIEP)

GPS Satellites:

.-"‘f-.—- A
L\
y i | —
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General Relativity (Experiment)

GR in Practice: Moving through curved spacetime

- Gravitational Redshift
(Einstein Delay)

- Shapiro Effect
(Shapiro Delay)

- Gravitational Lensing
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Demorest, et al., Nature. 2010 Oct 28;467(7319):1081-3. doi: 10.1038/nature09466
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General Relativity (Experiment)

GR in Practice: Moving through curved spacetime
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General Relativity (Experiment)

GR in Practice: Moving through curved spacetime

- Gravitational Redshift
(Einstein Delay)

- Shapiro Effect
(Shapiro Delay)

distorted light-rays

- Gravitational Lensing
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General Relativity (Experiment)

GR in Practice: Moving through curved spacetime

- Gravitational Redshift
(Einstein Delay)

- Shapiro Effect
(Shapiro Delay)

- Gravitational Lensing
HOLiCOW Collaboration
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The Schwarzschild Metric and Black Holes

28 June 2014 16 /35



General Relativity (Experiment)

The Schwarzschild Metric and Black Holes

a#=-(1- 27+

+ 7 d6?* + 1* sin® Od¢p?

G
(-5

Jeffrey Hazboun (CIEP)
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General Relativity (Experiment)

The Schwarzschild Metric and Black Holes

2Gm 1
d&:—(l— — )dzz+(1_2G_m)er

rc?
+ 7 d6?* + 1* sin® Od¢p?

The singularity at r =0
is a different story.
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General Relativity (Experiment)

Linear Gravity
Einstein 1916 & 1918

- What do you do when you have complicated DiffEQ?
Symmetry or Perturbation Theory

- What do small perturbations in the metric look like in the curvature?

i = M+ Ny

Where h,, is assumed small.

- The Einstein equation, written in terms of h,, is a wave equation

0° 0°
—whvﬂ arF ﬁh‘/” = —167TGTVH
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General Relativity (Experiment)

Quadrupolar Signal

- One of the simpler solutions of this wave equation relates to the

second derivative of the quadrupole moment.
2G d*Qj r
hij(t,%) = TWQZU Qij= Qij(t_z)

- Mass (Energy, momentum) curves spacetime, but does not
create waves.

- Motion is relative, so a changing position can be “dealt with”
using a change of coordinates.

- The quadrupole is related to the moment of inertia tensor.

Multipole | Gravity Type
Monopole Total mass Scalar (0-Tensor)
Dipole Position of Mass Vector (1-Tensor)
Quadrupole | Shape of Mass 2-Tensor
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General Relativity (Experiment)

Gravitational Waves are Dynamic Curvature
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General Relativity (Experiment)

Gravitational Back Reaction and Hulse-Taylor

| T T
- Einstein published the o %._\L\ S
quadrupole formula in 1916. O N
: Y 1
- Einstein published the correct z h
quadrupole formula in 1918. a 'r 7
G -.. ... = T 1
uv o
P=—2(0, Q% |
5 ad -2 —
| 1 | 1 | I 1

- Hulse and Taylor discover the oo D”' os0moe
binary pulsar, B1913+16, in 1974. o

FI1G. 6.—Orbital phase residuals, obtained from the data listed
_ Taylor and Weisberg publlsh the in Table 4. If the orbital period had remained constant, the points

would be expected to lie on a straight line. The curvature of the

energy IOSS due to gravitational parabola drawn through the points corresponds to the general

relativistic prediction for loss of energy to gravitational radiation,

back reaction. or P,=—240x10" "2,
Taylor and Weisberg, 1981
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General Relativity (Experiment)

How do we detect Gravitational Waves?

- If you want to detect a physical phenomenon, you ask yourself
“What does is do to a physical system?”

- Gravitational waves change the proper spacetime distance
between points.

1 2 1 2
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General Relativity (Experiment)

How Strong are Gravitational Waves?

- Couple Dancing
h~2x10"*
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General Relativity (Experiment)

How Strong are Gravitational Waves?

- Couple Dancing
h~2x10"*

- Battleships Colliding
h~5x107

- Io Orbiting Jupiter
h~3x1072

- NS Binary at Galactic
Center h~2x 10719

- SMBH Binary at

Cosmological Distance
h~2x1071°
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Gravitational Wave Spectrum
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General Relativity (Experiment)

How to detect this motion? Interferometers!
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General Relativity (Experiment)

LIGO Detected the signal from a Black Hole Binary
On September 14th, 2015 (~ 30M,), Phys. Rev. Lett. 116, 061102

Hanford, Washington (H1) Livingston, Louisiana (L1)

T T T

— L1 observed
H1 observed (shifted, inverted)
T T

Strain (1072%)

-1.0 H — Numerical relativity — Numerical relativity
Reconstructed (wavelet) Reconstructed (wavelet)
[ Reconstructed (template)

T T

W Reconstructed (template)
T T
05F T

0.0
-0.5

1l

I |
Il 1 1
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LIGO Detected the signal from a Black Hole Binary
On September 14th, 2015 (~ 30M;), Phys. Rev. Lett. 116, 061102
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General Relativity (Experiment)

Globe Girdling Network of Gravitational Wave Detectors

Operational

Under Construction
Planned

Credit: LIGO
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General Relativity (Experiment)

LISA is the L3 ESA Mission

iE llio mAs
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General Relativity (Experiment)

LISA Pathfinder has been a huge success

AP L4

5
3
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General Relativity (Experiment)

LISA Pathfinder has been a huge success

LISA PATHFINDER EXCEEDS EXPECTATIONS

of the test masses [ms

Residual relative
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Characteristic Noise Strain

Stochastic
background

Massive binaries
Supermassive
binaries Resolvable galactic
binaries

Extreme mass
ratio inspirals
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General Relativity (Experiment)

Continuous, Burst and Stochastic Signals

Continuous Wave Signal: Burst Signal:
- Low to medium strength - Strong to medium strength
signal. signal.
- Long lived. - Short lived
- Few Fourier modes. - Many Fourier modes.
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General Relativity (Experiment)

Continuous, Burst and Stochastic Signals

Stochastic Background: - Many Fourier modes.

Often following a power-law, or
- Individual sources weak, but B W

sum detectable.
- Longlived. - Gerhard Mantz, Rough Seas

turnover power spectral model.
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General Relativity (Experiment)

Why Extend General Relativity?

Universe Mass
Composition

NASA Figure

Heavy Elements
0.03%

Neutrinos

: ]
Tl o.3%

Free Hydrogen

B and Helium
iy 1%

W

8 Dark Matter
23%

Dark Energy
72%

There are two dark clouds over

General Relativity...

Dark Energy and Dark Matter.
-Jiirgen Ehlers

Jeffrey Hazboun (CIEP)

GR Lecture

Until it is solved, the problem of dark
energy will be a roadblock on our
path to a comprehensive fundamental
physical theory.

-Steven Weinberg
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General Relativity (Experiment)

Why Extend General Relativity?

Heavy Elements

Universe Mass
Composition

Here. /

Neutrinos

be ' Fi H
. ree Hydrogen
- 8 and Helium
Dragons
‘ Dark Matter
23%
Dark Energy

NASA Figure 72%
There are two dark clouds over Until it is solved, the problem of dark
General Relativity... energy will be a roadblock on our
Dark Energy and Dark Matter. path to a comprehensive fundamental

-Jiirgen Ehlers physical theory.

-Steven Weinberg
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General Relativity (Experiment)

Changes to GR

- MOND
- Massive Graviton Theories (propagation tests)

Changing the Einstein field equation.
Bimetric theories
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Other Polarizations
Metric Theories of Gravity
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