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Getting started...

+ PTA stands for Pulsar Timing Array

- So we will talk about...

- Pulsars: The basics you need o know
+ Timing: The general idea (more detail to follow)

- Arrays: Using mulfiple pulsars to detect gravitationadl
waves

- What we won't talk about...

- Lots of details (you'll get plenty of this in tThe next 2
weeks)



Pulsars: The simple picture

Pulsars are like

ik interstellar lighthouses

RADIATION
BEAM

- Super stfrong magnetic
fields (108 — 10 Gauss)

Rapid rotation (1 ms —
10s

Radio (and high
energy) beams

RADIATION
BEAM

Image credit: Michael Kramer

Image credit: Bill Saxton, NRAO/AUI/NSF



" Pulsaffs are some of the most extreme objects in the
SN Universe | | |

in-a

500,000 Earth masse
region the size of =
Manhattan

. This is like squeezing the
~ population of the Earth
. infoasugarcube

Like city-sized atomic
nuclei with black-hole like

gravity spinning asfasta—  Magnetic fields billion to

blender . quadrillion fimes stronger
| - . than man-made
magnets '

Image credit: NASA / JPL-Caltech / R. Hurt (SSC)



Why do pulsars shine?

- Still an open area of research
- Basic picture is

- Time varying B gives rise to huge E

- Charged particles accelerated to relafivistic vin
magnetosphere

« Gives rise To beamed radiation

rotation
axis

light : co—rotating magnetosphere
cylinder

_field |i gap
Y —hhoton
- charge

last open

field line

close neutron\ neutron star surface
field lines star

Image credit: Lorimer & Kramer, HOPA, 2005




Pulse stability

- Pulse shape/intensity
can vary from rotation
fo rotatfion

» But a stable pulse profile
emerges after summing
over many rofations
(~hundreds - thousands)
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Image credit: Cordes, 1979, SSR, 24, 567




Observable and Derived Properties

- We measure the spin period (P) and ifs fime
derivative (spin-down, P-dot)

- From this, we can derive some model-dependent
properties
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The Neutron Star Zoo

- The pulsar population is very diverse

- Pand P-dot vary
by orders of
magnitude

- The fastest and
Most stable are
the millisecond
pulsars

Period Derivative (s s 1)

10!

Data from ATNF catalog



How to make an MSP

Make a standard, long-period pulsar

- Once it dies, recycle it via accretfion from a
companion

- When accretion stops, we are left with a pulsar with
very rapid and stable rotation

Image credit: Bill Saxton, NRAO/AUI/NSF



Finding pulsars

- We currently know of about 2,300 pulsars, ~200 of
which are MSPs

* FInding new pulsars is a fime and computationally
intensive task

- Pulsar surveys are magjor projects «

at most large radio telescopes =

Syl
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Taken from "Handbul;k- |:|-.f ];;.l-lsar Astronomy” by Lorimer & Kramer Data from Duncan Lorimer
http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs. txt



Observing Pulsars

* Incoming radio waves
are focused by optical
system

- Receiver detects the
electric field over @
wide radio bandwidth

- Amplifiers, mixers,
digifizers, and other
components convert
raw voltages into digital
signails

Image credit: http://abyss.uoregon.edu/~js/images/radio_telescope.gif



Frequency (MHz)

Eftects of the Interstellar Medium

* Two frequency-dependent effects: dispersion and
scattering
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Overcoming ISM Effects

- Coherent de-dispersion can remove the effects of

smearing

- Cyclic spectroscopy being used to mitigate

scattering

Taken From "Handbook of Pulsar Astronomy™ by Lorim

er & Kram
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. Not coherent
E/de—dispersion
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Taken from "Handbook of Pulsr Astrenomy™ by Larimer & Kramer
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Pulsar Timing (The Basics)

* Timing Is one of the most powerful techniques for
studying pulsars

* It takes advantage of the clock-like nature of pulsars

- Deviations from the expected arrival time of a pulse
contain useful information

+ Let's go through tfiming schematically...
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Timing Models

- Any phenomenon that changes the TOA of a pulse
will lead to non-zero residuals

- |If we can model this, we can measure/characterize
the phenomenon

- Period, spin-down

- Position, parallax, proper motion
- Binary orbital parameters

- The interstellar medium (ISM)

- And more...



Millisecond Pulsar Arrays

- Some things that affect TOAs are specific o an
individual pulsar

- Orbital motion, proper motion, changes in the ISM,
efc.

- Some things that affect TOAs are correlated
petween pulsars

- Changes in standard fimescales
- Gravitational influence of planets in the solar system

- Gravitational waves



Millisecond Pulsar Arrays

* |f we cross-correlate the residuals from many pulsars,
we Mmay be able to detfect these effects

- To detect small changes in TOAs, we need very high
precision dafta from very stable millisecond pulsars

04l The Hellings-Downs Curve
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Image credit: NANOGrav

Arrival time correlation

Image credit: David Champion




Pulsar Timing Arrays and Gravitational
Waves

- Gravitational waves are small, fime dependent
perturbation in space-time

+ These minutfe variations change the arrival time of
pulses, but GWs are very weak

- PTAs need fiming precision of 10s — 100s of
nanoseconds to directly detect GWSs

Image credif: Wikipedia



Almost « e

_ I mg we. hove ever learned Gbou’r The
distant Unive se

NASA, ESA, M. Livio and the Hubble 20th Anniversary Team (STScI-)* :



-Gravitational wave astronomy will give us an entirely
' new window on the Universe

I —

.

We are guaranteed to learn amazing new
things

NASA/Dana Berry, Sky Works Digital



Observational Signatures
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- The IPTA is currently timing 50 MSPs, many with sub-us
RMS residuals



PTAs vs Double Neutron Stars
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Image credit: Weisberg, Nice, & Taylor 2010, ApJ,
772, 1030



Sources of PTA GWs

- PTAs are most likely to detect GWs from merging
supermassive binary black holes

- |t could be from an individual binary...

- Or it could be a background consisting of the
combined signals from binaries throughout the
Univerise (a stochastic background)...

- Or it could be a burst signal from a merger event
- A more speculative source of GWs are cosmic strings

- Predicted by certain theories



The big picture of gravitational wave astronomy
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Image credit: NANOGrav



The IPTA

- NANOGrav — North American Nanoheriz
Observatory for Gravitational Waves

* EPTA - European Pulsar Timing Array

* PPTA — Parkes Pulsar Timing Array
- [PTA - International PTA
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NANOGrav Radio Telescopes

- NANOGrav uses the Arecibo Observatory and
Green Bank Telescopes

- Arecibo is the largest and most sensitive radio telescope
in the world

- GBT is one of the largest fully-steerable dishes

Image credit: NAIC

Image credit: NRAQ/AUI



EPTA Telescopes

* The EPTA uses 5
European telescopes

* The LEAP project seeks
to tie these together
info a phased array

Imelgs credifs: EPTA
(www.epta.eu.org)



The Parkes Telescope and the PPTA

Image credit: ATNF/CSIRO

- The PPTA uses the 64-

meter Parkes telescope

hemisphere 1

* An important southern

‘elescope

that comples
coverage of

'es sky
the IPTA



Challenges: Noise Sources
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Challenges: Noise Sources
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Current Limits: Stochastic Background

- PTAs are already
PPTA (79 ) I pufting useful

1° constraints on SMBH
‘ ___merger models
NANOGrav i (;3
0g L VB model (5.5 y) 1. < * New data releases
| | ¢ forthcoming from
SMBH model 2 j NANOGrav, EPTA, PPTA,
- 1 and combined IPTA
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09[ Qe (fppra)]
Image credit: Shannon et al., 2013, Science, 342, 334



Current Limits: Continuous Wave
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When will we succeed

* Time to detection * We believe a detection will
depends on happen within The next 5 -
- The Universe 10 years
* Timing 10 .
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The Future: Instruments and Telescopes

- CHIME is a Canadian
cosmology experiment

- Will include a pulsar
backend allowing daily
observations of northern [PTA
MSPs

 Ulfra-broad band receiver
being commissioned at
Effelsberg

- Similar receiver is planned
for the GBT

= .~ == )| - Important for mitigating
ISM effects

Image credit: NANOGrav



The Future: Instruments and Telescopes

« FAST is a 500-meter
telescope that will illuminate
300 meters at a time

- Like a more steerable
Arecibo

- Eventually, the SKA wiill
provide incredible
sensitivity

- Better S/N -> beftter timing
precision, more pulsars

Image credit: SKA/Swinburne



Beyond Detection:

ONGOING MERGER
INDICATORS

CLOSE BINARY
TRACERS

PTA Astrophysics
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Image credit: NANOGrav



The Big Picture

* The IPTA Is doing cutting edge, ground breaking,
world class science (and you are a part of if)

- We are opening an entirely new frontier in
astfronomy

- We will learn new and unexpected things
* The work is hard but exciting
* Pushing new technigues, instruments, etc.

- Working together, this will be an exciting decade!
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