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The Great Battle of Our Time




Membership pre-test

An astronomer measures the mass of a neutron star in
a binary pulsar system to be:

“M = (1.39 % .02) M with 90% confidence”

where the uncertainty is measurement noise (assumed
Gaussian) in the observing apparatus.

Q: How do you interpret the quoted result?

Al:You are 90% confident that the true mass of the NS
lies in the interval [1.37M, 1.41 M|

A2:90% is the long-term relative frequency with which
the true mass of the neutron star lies in the set of

intervals{[f\/i— 02Mg, M + 02Ms]} where {J\/f}is the set
of measured masses.
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Affiliation

® |f you chose answer Al, you belong to the
Bayesian church.

® |f you chose answer A2, you belong to the
Frequentist church.
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Goal of science

“Infer nature’s state from observations™

® Observations are;:
(i) incomplete (problem of induction)

(ii) imprecise (measurement noise)

== >Conclusions uncertain!!

® Statistical inference (a.k.a. plausible inference,
probabilistic inference) is a way to quantify and
manipulate uncertainty
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Algebra of probability

sum rule

X)—I—p(Y)Il/ roduct rule
oduct ru

p(X,Y) = p(X|Y)p(Y) < P

joint probability conditional probability
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Bayes’ theorem
(“learning from experience”)

likelihood ,
prior
\
p(D|H)p(H)
p(H|D) =
0=,
posterior normalization factor

p(D) = p(D|H)p(H) + p(D|H)p(H)




A frequentist... A Bayesian...

probability = long-run relative freq probability = degree of belief

Assumes that the data are random and | Assumes that the data are fixed and that
that the hypothesis (parameters) are [ the hypothesis (parameters) are random.

fixed but unknown. Makes use of the Makes use of the posterior probability
likelihood function p(D|H) distribution p(H|D)

constructs a statistic to estimate a
parameter, or see if the data are
consistent with a model

needs to specify prior degree of belief in
a particular hypothesis or parameter

calculates the probability distribution of | uses Bayes’ theorem to update prior
the statistic (sampling distribution) degree of belief in light of new data

constructs confidence intervals and p- | constructs credible sets and odds ratios
values (for parameter estimation and | (for parameter estimation and hypothesis
hypothesis testing) testing)
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Frequentist Confidence

e Coverage: Does the “true”
value of the parameter lie in
the x% confidence interval in x
% of experiments

* Neyman construction
guarantees correct coverage.

e Over coverage is ok, under-
coverage is bad

parameter 0

Intervals

= D) —
Confidence interval
S T %(0), 0,(x)
O, ' R R EEEEEEES
x.(0), 0,(x : :
1(6),0,0) |

«g x1(:90) x2§60)

Possible experimental values x
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Frequentist hypothesis testing

p(t|Ho) A Want to test hypothesis H.
Introduce null hypothesis Hy = H; .
sampling Argue for H| by arguing against Ho
distribution
p-value

D = PI‘Ob(t > tobs‘HO)

| >
tthres tobs t o
test statistic

If tobs>tehres, reject Ho (accept Hi) at p+100% confidence level.
CAUTION' (1 — p) ?é PrOb(Hl‘t > tobs)
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Frequentist hypothesis testing

® The p-value needed to reject the null hypothesis is the
threshold for acceptance of H

® There are two types of errors:
® False alarm: Reject null hypothesis when true
® false dismissal: Accept null hypothesis when false

® Different test statistics are judged according to their
false alarm and false dismissal probabilities

® |[n GW data analysis, one fixes the false alarm
probability at some tolerably low level, then finds the
test statistic that minimizes the false dismissal
probability (maximize detection probability)

12
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Bayesian parameter estimation

p(a|D) 4

posterior
distribution

o :/ da p(a|D)

credible region

> a

a1 20,2

L—o Jal d\ p(a|D)
e credible region not unique plar|D =Plaz|D)

1_
= | dxptalD)
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Bayesian hypothesis testing

® |t doesn’t make sense to talk about a single hypothesis
without reference to alternative hypotheses since

p(D) = ZP(D\Hz)p(Hz)

Compare two hypotheses: /
p(H1|D)  p(D|H1) p(

Hy)p
p(Ho|D)  p(D|Hy) p(
yd

posterior odds

Hy)
Hy)

marginalized likelihood ratio prior odds

(Bayes factor)

14

Wednesday, June 18, 14



Marginalized likelihood

p(D|H) = /dap(Da,H)p(aH)/‘% £(amaX)i—C;

if data are informative

L INMax —
(@max) likelihood A

Aa f |

<

A

Occam’s factor




A frequentist... A Bayesian...

probability = long-run relative freq probability = degree of belief

Assumes that the data are random and | Assumes that the data are fixed and that
that the hypothesis (parameters) are [ the hypothesis (parameters) are random.

fixed but unknown. Makes use of the Makes use of the posterior probability
likelihood function p(D|H) distribution p(H|D)

constructs a statistic to estimate a
parameter, or see if the data are
consistent with a model

needs to specify prior degree of belief in
a particular hypothesis or parameter

calculates the probability distribution of | uses Bayes’ theorem to update prior
the statistic (sampling distribution) degree of belief in light of new data

constructs confidence intervals and p- | constructs credible sets and odds ratios
values (for parameter estimation and | (for parameter estimation and hypothesis
hypothesis testing) testing)
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Mathematical problem

Instrument response

measured data intrinsic signal noise
\ \ /
d(t) = (R = h)(#;0) + n(?)

S

measured signal
signal parameters

® Given the data, infer the value of the signal parameters
o Simplify: d(t) = s(t;a,b) + n(t)

® Begin by characterizing the noise
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Noise is ...

Anything that interferes with identification of the signal

Typically associated with measuring apparatus, but could
be a foreground signal

Usually easier to characterize than the signal (point off-
source, estimate from other data stretches, ...)

Typically associated with random processes (otherwise,
subtract it out)

Characterized statistically (probability distribution or
ensemble averages over all possible measurements)

(n(t1)), (mEt)n(t)), (nt)n(t)n(ts)), -
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Gaussian processes

® Noise is often described as a Gaussian random process

o Why!

histogram of samples is approximately Gaussian

Central Limit Theorem (sum of a large number of
random disturbances)

given knowledge of only |Ist and 2nd moments, a
Gaussian is the least informative (maximum entropy)
probability distribution
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Gaussian distribution

® Single sample:

p(n) = : exp [

2
2mos

® Multivariate Gaussian:

1
P2, N = N Jaet Gy O

(x)d

20

Mmean
1 (n — ,un)2
2 o2

"\ .

variance

, V-1
) Z (ni — pini)Chri;

2,

7=

0

covariance matrix

Chij := (ninj) — (n;)(n;)

(nj — ping)
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Likelihood function

Probability of noise: p(n|f) = 7 t(12 N exp <_%nTC—1n>
et(2mC,,

Measured data is: d(t) = s(t,\) + n(t,0) = n(t,0) =d(t) — s(t, \)

Probability of data: p(d|.6) = — det(;r o3 P (—%(d — ()"0 (d - s(A)))

Null Hypothesis: d(t) = n(t,0) with likelihood po(d|0) = p(n|0)

p(d|X, 0) 1

Log-likelihood ratio: InA(d|)\, 0) = o(df) (d|s) — §(S|s)

Noise-weighted inner product: (z|y) =z"C, 'y

21
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Maximum Likelihood
Estimators (MLEs)

* |t is common in frequentist statistics to compute the maximum
likelihood estimators of the signal parameters by maximizing the
likelihood ratio.

Ol A(d|),0) generally must be done numerically but can be done

ON; =0 analytically in some cases

e Covariance matrix I' of parameters is defined through:

82 In A(d|\, 6)
1) = — ’
i ONON; |5

e Use maximum likelihood estimators \ to construct
confidence intervals on “true” parameters

* This is exactly what tempo2 did when you hit “fit”
22
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Nuisance Parameters: YVYhat
about that §!?

* In many cases our likelihood depends on parameters that must be
included but are not of particular interest

* Want our parameter estimates and detection statements to be
independent of §

* Frequentist statistics have no robust way of dealing with nuisance
parameters. Common strategies are:

* Fix the nuisance parameters to their maximum likelihood value and
perform all analysis using these values

e Construct profile likelihood which maximizes the likelihood
function over the nuisance parameters for each true value of
parameters of interest

* Use frequentist-Bayesian hybrid method
23
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B: ed

if /and \ are
independent

Joint posterior = ,,|
Q.

rior distribution

inalized likelihood

AdO

* marginalized |

* nuisance parameters are trivially marginalized: p(A|d) = [ p(\, 6|d)d6

* Map out entire parameter space and then construct credible regions
using marginalized posterior distributions.

24
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Bayesian Example

) e
L | | — . Il Real NANOGrav data.
year
: CJ 9 year ||
;] SRS FORNR S SN R (R R -
< | | | Green distribution is prior on GVWB
& |amplitude from simulations
oo N *-l ----------------- -
g 5 Red is the posterior on the GWB
= ]L { amplitude using 5-year data.
Bl | EE s
: 5 A :
4 ~ . .
_ A L'-\__ 1 Blue is posterior on the GWB
0.0 et amplitude using 9-year data.

logy Agw
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Summary

® Frequentist:
-  pros:
® usually fast to compute
® usually easy to implement
- cons:

® relies on simulations to perform parameter estimation and
hypothesis testing

® no robust way to deal with nuisance parameters
® Bayesian

-  pros:
® Does not rely on simulations, only data we have measured
® Maps out entire parameter space not just peak
® Robust way to deal with nuisance parameters
°

Directly measures “evidence” for a model
- cons:
® Not as easy to implement (especially in large parameter spaces)

® Final results have some dependence on possibly subjective prior
information

26
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DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. IF THEY

BOTH COME UP SIX, ITUES TO US,
OTHERWISE, I TELLS THE. TRUF.
LET'S TRY.
DETECTOR! HAS THE
SN GONE NOVA?

N )

FREQUENTIST STRTISTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILTY OF THS RESULT
HAPPENING BY CHANCE 15 2 =0027 BET YOU $50
GNCE p<0.05 T CONCLUDE Uil
THAT THE SUN' HAS EXPLODED )

faal
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