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This talk has been colored by personal experience 
and is likely to be unbiased
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The Great Battle of Our Time
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Membership pre-test
• An astronomer measures the mass of a neutron star in 

a binary pulsar system to be:

 “                                      with 90% confidence”

where the uncertainty is measurement noise (assumed 
Gaussian) in the observing apparatus.

• Q: How do you interpret the quoted result?

• A1: You are 90% confident that the true mass of the NS 
lies in the interval 

• A2: 90% is the long-term relative frequency with which 
the true mass of the neutron star lies in the set of 
intervals                                     where       is the set 
of measured masses.

M = (1.39 ± .02)M!

[1.37M!, 1.41M!]

{[M̂ − .02M!, M̂ + .02M!]} {M̂}
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Affiliation

• If you chose answer A1, you belong to the 
Bayesian church.

• If you chose answer A2, you belong to the 
Frequentist church.
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Goal of science

• Observations are: 

(i) incomplete (problem of induction) 

(ii) imprecise (measurement noise)     

              Conclusions uncertain!!

• Statistical inference (a.k.a. plausible inference, 
probabilistic inference) is a way to quantify and 
manipulate uncertainty

“Infer nature’s state from observations”
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Algebra of probability

p(X, Y ) = p(X|Y )p(Y )
p(X) + p(X) = 1

sum rule

product rule

conditional probabilityjoint probability
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Bayes’ theorem
(“learning from experience”)

prior

p(H|D) =
p(D|H)p(H)

p(D)

posterior normalization factor

likelihood

p(D) = p(D|H)p(H) + p(D|H)p(H)
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A frequentist... A Bayesian...

probability = long-run relative freq  probability = degree of belief

Assumes that the data are random and 
that the hypothesis (parameters) are 
fixed but unknown. Makes use of the 

likelihood function p(D|H)

Assumes that the data are fixed and that 
the hypothesis (parameters) are random. 
Makes use of the posterior probability 

distribution p(H|D)

constructs a statistic to estimate a 
parameter, or see if the data are 

consistent with a model

needs to specify prior degree of belief in 
a particular hypothesis or parameter

calculates the probability distribution of 
the statistic (sampling distribution)

uses Bayes’ theorem to update prior 
degree of belief in light of new data

constructs confidence intervals and p-
values (for parameter estimation and 

hypothesis testing)

constructs credible sets and odds ratios 
(for parameter estimation and hypothesis 

testing)
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Frequentist Confidence 
Intervals
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20 36. Statistics

36.3.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist intervals obtained
with a procedure due to Neyman [29], described below. These are intervals (or in the
multiparameter case, regions) constructed so as to include the true value of the parameter
with a probability greater than or equal to a specified level, called the coverage probability.
In this section, we discuss several techniques for producing intervals that have, at least
approximately, this property.

36.3.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1 − α, and for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f(x; θ) dx . (36.49)

This is illustrated in Fig. 36.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such intervals for all values
of θ, designated in the figure as D(α), is known as the confidence belt. Typically the
curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume for this
discussion.

Possible experimental values x

p
a
ra

m
et

er
 θ x2(θ), θ2(x) 

x1(θ), θ1(x) 

x1(θ0) x2(θ0) 

D(α)

θ0

Figure 36.3: Construction of the confidence belt (see text).

June 18, 2012 16:20

Confidence interval
• Coverage:  Does the “true” 
value of the parameter lie in 
the x% confidence interval in x
% of experiments

• Neyman construction 
guarantees correct coverage. 

• Over coverage is ok, under-
coverage is bad

Wednesday, June 18, 14



Frequentist hypothesis testing
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Want to test hypothesis H1.
 Introduce null hypothesis                .  
Argue for H1 by arguing against H0

H0 ≡ H1

If tobs>tthres, reject H0 (accept H1) at p∗100% confidence level.

Data Analysis 101: Lecture Notes

J.D. Romano

IPTA Summer School

June 2006

dj(t) =

Z
dt0

h
R+

j (t� t0)h
+

(t0;✓) +R⇥
j (t� t0)h⇥(t

0
;✓)

i
+ nj(t) (1)

d(t) = (R ⇤ h)(t;✓) + n(t) (2)

d(t) = s(t; a, b) + n(t) (3)

(1� p) 6= Prob(H
1

|t > t
obs

) (4)

1

CAUTION!

p(t|H0)

tthres tobs t
test statistic

sampling
distribution

p = Prob(t > tobs|H0)

p-value
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Frequentist hypothesis testing

• The p-value needed to reject the null hypothesis is the 
threshold for acceptance of H1

• There are two types of errors:

• False alarm: Reject null hypothesis when true

• False dismissal: Accept null hypothesis when false

• Different test statistics are judged according to their 
false alarm and false dismissal probabilities

• In GW data analysis, one fixes the false alarm 
probability at some tolerably low level, then finds the 
test statistic that minimizes the false dismissal 
probability (maximize detection probability)

12
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Bayesian parameter estimation

a

p(a|D)

13

posterior
distribution

↵ =

Z a2
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da p(a|D)

credible region

• credible region not unique

a1 a2

p(a1|D) = p(a2|D)
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a1 a2
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Bayesian hypothesis testing

• It doesn’t make sense to talk about a single hypothesis 
without reference to alternative hypotheses since

p(D) =
∑

i

p(D|Hi)p(Hi)

posterior odds prior oddsmarginalized likelihood ratio
(Bayes factor)

Compare two hypotheses:

• Note that a p-value of .05 does not mean that the probability of a signal being present,
H1, given tobs is .95. This would be true if p were equal to Prob(H0|t > tobs); but
what we have is p = Prob(t > tobs|H0), which is not equal to Prob(H0|t > tobs).

• There two types of errors one can make:

Type I or false alarm errors: Rejecting the null hypothesis when in fact it is true.

Type II or false dismissal errors: Accepting the null hypothesis when in fact it is false.

• Di�erent test statistics are judged according to their false alarm and false dismissal
probabilities.

• For gravitational wave data analysis, people will be initially reluctant to falsely claim
a detection. Hence the false alarm probability will be set to some very low value. The
best statistic is the one which minimises the false dismissal probability (i.e., maximises
detection probability) for fixed false alarm. (This is the Neyman-Pearson criterion.)

• For medical diagnosis, on the other hand, a doctor is very reluctant to falsely dismiss
an illness. Hence the false dismissal probability will be set to some very low value.
The best statistic is the one which minimises the false alarm probability for fixed
dismissal.

3.6 Bayesian parameter estimation

• Parameter estimation in Bayesian statistics is via the posterior distribution p(a|D).

• The posterior distribution tells you everything you need to know about a parameter,
although you can reduce it to a few numbers if you like—e.g., mode, mean, standard
deviation, etc.

• A Bayesian confidence interval is simply defined in terms of the area under the pos-
terior distribution between one parameter value and another.

• If the posterior distribution depends on two parameters a and b, but you only really
care about a, then you can obtain the posterior distribution for a by marginalising
over b:

p(a|D) =

⇥
db p(a, b|D) =

⇥
db p(a|b,D)p(b) (59)

3.7 Bayesian hypothesis testing

• It doesn’t make sense to talk about a single hypothesis in Bayesian statistics without
making reference to alternative hypotheses. This is because we need to specify the
alternative hypotheses to calculate the denominator p(D) in Bayes’ theorem:

p(D) =
�

i

p(D|Hi)p(Hi) (60)

• Comparison of two hypotheses is natural in the Bayesian framework:

p(H1|D)

p(H0|D)
=

p(D|H1)

p(D|H0)

p(H1)

p(H0)
(61)
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Marginalized likelihood

∆a

likelihood

prior
δa

L(amax)

a

1

∆a
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if data are informative
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A frequentist... A Bayesian...

probability = long-run relative freq  probability = degree of belief

Assumes that the data are random and 
that the hypothesis (parameters) are 
fixed but unknown. Makes use of the 

likelihood function p(D|H)

Assumes that the data are fixed and that 
the hypothesis (parameters) are random. 
Makes use of the posterior probability 

distribution p(H|D)

constructs a statistic to estimate a 
parameter, or see if the data are 

consistent with a model

needs to specify prior degree of belief in 
a particular hypothesis or parameter

calculates the probability distribution of 
the statistic (sampling distribution)

uses Bayes’ theorem to update prior 
degree of belief in light of new data

constructs confidence intervals and p-
values (for parameter estimation and 

hypothesis testing)

constructs credible sets and odds ratios 
(for parameter estimation and hypothesis 

testing)
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• Given the data, infer the value of the signal parameters 

• Simplify:

• Begin by characterizing the noise

Mathematical problem
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signal parameters
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Noise is ...
• Anything that interferes with identification of the signal

• Typically associated with measuring apparatus, but could 
be a foreground signal

• Usually easier to characterize than the signal (point off-
source, estimate from other data stretches, ...)

• Typically associated with random processes (otherwise, 
subtract it out)

• Characterized statistically (probability distribution or 
ensemble averages over all possible measurements)

1.8 Windowing

• Multiplication of a signal x(t) by a top-hat function is an example of windowing.
Windowing restricts the duration of a signal to a finite range.

• The top-hat function is also called a rectangular window because of its obvious rect-
angular shape.

• Tapered windows, which go smoothly to zero at both the beginning and end of the
window, are useful because they help suppress leakage of power into neighboring
frequency bins.

• This leakage is basically due to the sinc-function shape of the Fourier transform of the
rectangular window, which has non-negligible support at high frequencies because of
the rapid turn-on and turn-o� of the rectangular window in the time domain. If the
frequency of a periodic signal does not lie at the one of the discrete frequencies fk,
convolution with the sinc function in the frequency domain will spread the power to
neighboring frequency bins.

• Using a tapered window helps mitigate this problem since its smooth turn-on and
turn-o� give rise to a sinc-like function with much less support at high frequencies.

• Although there are many di�erent tapered windows to chose from (e.g., Tukey win-
dows, triangular windows, Welch windows, etc.), each with its own special advantages
and disadvantages, a Hann window defined by

wj :=
1

2

⇤
1� cos

�
2�j

N

⇥⌅
, j = 0, 1, . . . , N � 1 (23)

works well for most applications.

2 Characterizing noise

2.1 Random processes

• Noise is anything that interferes with the identification of a signal.

• It is typically associated with the measuring apparatus, but it might be a (foreground)
signal, as is the case with the gravitational wave confusion noise from galactic white
dwarf binaries for LISA, if we are interested in detecting e.g., the signal from the
capture of a compact object by a SMBH or the cosmological background radiation.

• Noise is typically easier to characterize or estimate than the sought-after signal. Some-
times one can estimate the noise by pointing o� source, or, for weak signals, estimate
the noise from other neighboring data segments.

• Noise is typically associated with random processes, since if it were deterministic and
we knew its form, then we could simply subtract it out from the data.

• Noise is thus characterized statistically, in terms of a probability distribution or ex-
pectation values with respect to a collection (or ensemble) of all possible outcomes of
a measurement. The n-point correlation functions are defined by

⌅n(t1)⇧ , ⌅n(t1)n(t2)⇧ , ⌅n(t1)n(t2)n(t3)⇧ , · · · (24)

8
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Gaussian processes

• Noise is often described as a Gaussian random process

• Why?

- histogram of samples is approximately Gaussian

- Central Limit Theorem (sum of a large number of 
random disturbances)

- given knowledge of only 1st and 2nd moments, a 
Gaussian is the least informative (maximum entropy) 
probability distribution

19
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Gaussian distribution
• Single sample:

• Multivariate Gaussian:

• A single random variable n is said to have a Gaussian probability distribution if

p(n) =
1 
2⇥⌅2

n

exp

�
�1

2

(n� µn)2

⌅2
n

⇥
(37)

The parameters µn and ⌅2
n are the mean and variance of n.

• A set of random variables nj , where j = 0, 1, · · · , N � 1 (e.g., the discrete time
samples nj of a random process n) is said to have a multivariate Gaussian probability
distribution if
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1
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2
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where Cnij are the components of the covariance matrix

Cnij := ⇧ninj⌃ � ⇧ni⌃⇧nj⌃ (39)

• The covariance matrix Cnij generalises the variance ⌅2
n for a single Gaussian-distributed

random variable.

• If the discrete random process nj has zero mean (i.e., ⇧nj⌃ = 0), then the elements
of the covariance matrix are just the discretised version of the correlation function
Cn(⇧) = ⇧n(t)n(t� ⇧)⌃ that we defined for a continuous random process x.

2.7 Signal-to-noise ratio

• Signal-to-noise ratio (SNR) is a dimensionless measure of signal power to noise power.

• Amplitude signal-to-noise ratio (denoted ⇤ or S/N) is usually defined as the ratio of
the rms (root-mean-square) signal to the rms noise. Power signal-to-noise ratio is the
square of this, denoted ⇤2.

• If the data are denoted by

d(t) = s(t) + n(t) = (R ⇤ h)(t) + n(t) (40)

we can define

⇤2 :=
1

�BW

�
df

Ps(f)

Pn(f)
(41)

where �BW is the bandwidth of the detector. (The normalization is such that ⇤2 = 1
if the signal and noise power are equal.)

• The above expression is useful only if we have some a priori idea of the expected signal
power Ps(f). (The noise power Pn(f) is not as problematic, since we usually have a
model for the detector noise, or we can estimate it from an o⇥-source measurement
or from power spectrum estimates of nearby data stretches.)
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Likelihood function
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Probability of noise: p(n|✓) = 1p
det(2⇡Cn)

exp

✓
�1

2

nTC�1n

◆

Probability of data: p(d|�, ✓) = 1p
det(2⇡Cn)

exp

✓
�1

2

(d� s(�))TC�1
(d� s(�))

◆

) n(t, ✓) = d(t)� s(t,�)Measured data is: d(t) = s(t,�) + n(t, ✓)

d(t) = n(t, ✓)Null Hypothesis: p0(d|✓) = p(n|✓)with likelihood 

ln⇤(d|�, ✓) = p(d|�, ✓)
p0(d|✓)

= (d|s)� 1

2
(s|s)Log-likelihood ratio:

(x|y) = x

T
C

�1
n yNoise-weighted inner product:
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Maximum Likelihood 
Estimators (MLEs)

22

• It is common in frequentist statistics to compute the maximum 
likelihood estimators of the signal parameters by maximizing the 
likelihood ratio.

generally must be done numerically but can be done 
analytically in some cases

• Covariance matrix   of parameters is defined through:�

• Use maximum likelihood estimators    to construct 
confidence intervals on “true” parameters

@ ln⇤(d|�, ✓)
@�i

= 0

(��1)ij = �@2 ln⇤(d|�, ✓)
@�i@�j

����
�̂

�̂

• This is exactly what tempo2 did when you hit “fit”
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Nuisance Parameters: What 
about that   ?

23

✓

• In many cases our likelihood depends on parameters that must be 
included but are not of particular interest

• Want our parameter estimates and detection statements to be 
independent of ✓

• Frequentist statistics have no robust way of dealing with nuisance 
parameters. Common strategies are:

• Fix the nuisance parameters to their maximum likelihood value and 
perform all analysis using these values
• Construct profile likelihood which maximizes the likelihood 
function over the nuisance parameters for each true value of 
parameters of interest
• Use frequentist-Bayesian hybrid method 
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Bayes’ Theorem Revisited

24

d(�, ✓|d) = p(d|�, ✓)p(�, ✓)
p(d)

p(�)p(✓) if    and     are 
independent 
✓ �

• marginalized likelihood: p(d) =

Z
p(d|�, ✓)p(�, ✓)d�d✓

• nuisance parameters are trivially marginalized: p(�|d) =
Z

p(�, ✓|d)d✓

• Map out entire parameter space and then construct credible regions 
using marginalized posterior distributions.

Joint posterior distribution
likelihood function

marginalized likelihood

prior distribution
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Bayesian Example

25

2

FIG. 2: Di↵erential coalescence rate of SMBHBs per redshift per chirp mass with mass bins centered on 109M� (left) and
1010M� (right) with width 1 dex. The black circles and gray squares represent our upper 95% upper limits using the 9-year
and 5-year datasets respectively. Red error bars represent redshift ranges where the number of sources per frequency bin is
not large enough to form a background. The light gray shaded area show expected coalescence rate estimates obtained from
[1] as well as data from the Sloan Digital Sky Survey [5]. The blue shaded region comes from the phenomenological models
of [4]. The green shaded region is constructed by using the observed evolution of the galaxy mass function combined with the
MBH-M-stars relation from [2] to calibrate an analytical model for evolving the mass function via mergers [3].

Preliminary NANOGrav upper limits on SGWB
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Prior
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0.0

0.4
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1.2 Aup
gw = 7.4 ⇥ 10�15

Aup
gw = 1.8 ⇥ 10�15

Use prior on the expected 
distribution of the GWB amplitude 

from numerical simulations.

9-year dataset can update the 
prior

Choose conservative uniform prior 
on GWB amplitude. Run Bayesian 
analysis on 5 and 9-year datasets.

Upper limit 4.1 times more 
constraining than 5 yr and 1.3 times 

more constraining than PPTA

9-year dataset beginning 
to rule out upper edge of 

model space

109M�

• Both Bayesian and frequentist pipelines were run on 9-year datasets. 

• Frequentist method gives upper limit of                                    , a factor of 4 improvement 
over Demorest et al (2013)

Aup
gw = 1.76⇥ 10�15

Friday, June 13, 14

Real NANOGrav data.

Green distribution is prior on GWB 
amplitude from simulations

Red is the posterior on the GWB 
amplitude using 5-year data. 

Blue is posterior on the GWB 
amplitude using 9-year data.
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Summary
• Frequentist:

- pros:

• usually fast to compute

• usually easy to implement

- cons:

• relies on simulations to perform parameter estimation and 
hypothesis testing

• no robust way to deal with nuisance parameters

• Bayesian

- pros:

• Does not rely on simulations, only data we have measured

• Maps out entire parameter space not just peak

• Robust way to deal with nuisance parameters

• Directly measures “evidence” for a model

- cons:

• Not as easy to implement (especially in large parameter spaces)

• Final results have some dependence on possibly subjective prior 
information
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